

A search for lepton-flavour violating $\tau \rightarrow 3\mu$ decays with the ATLAS experiment

Conor McPartland

Carl Gwilliam and Jan Kretzschmar

Charged Lepton-Flavour Violation

- Flavour is not a fundamental symmetry of the Standard Model
- Flavour violation observed in neutrinos and quarks
- If found in charged leptons would be evidence of beyond standard model physics- such as leptoquarks or type-II seesaw mechanism
- Limits on tau are much less stringent than that of muons and electrons by approximately O(10⁴)
- Decay to be analysed $\tau^{\pm}{\rightarrow}\mu^{\pm}\mu^{\pm}\mu^{\mp}$
 - Standard model BR: x10⁻⁵⁵-x10⁻⁵⁶
 - Far below current detection ability

The LHC and ATLAS

- The LHC at CERN is a high energy proton- proton collider
- The ATLAS experiment is a multipurpose particle detector made up of: the inner detector, electron/ hadron calorimeters and a muon spectrometer

25m

- During run-2 (2015-18):
 - Centre of mass energy of 13 TeV
 - 139 fb⁻¹ of luminosity collected
- Two main τ production modes at LHC
 - Heavy Flavour (HF) e.g. $D_s \rightarrow \tau v$
 - Electroweak (EW) mainly W $\rightarrow \tau \nu$
- Hope to use ATLAS run 2 data to achieve a highly sensitive analysis

Previous Limits

- Current Branching Ratio Limits 90% confidence interval:
 - CMS run-2 (2023 paperarXiv:2312.02371): 2.9x10⁻⁸
 - Belle:
 - 2.1x10⁻⁸ (current best)
- Belle/ BaBar use high luminosity e⁺e⁻ collisions as opposed to the protonproton collisions at the LHC experiments

Signal and Background

• Three HF signal samples

Sample	Relative rate
$pp \rightarrow D_s \rightarrow \tau v$	65%
$pp \rightarrow bb \rightarrow \tau X$	25%
$pp \rightarrow bb \rightarrow D_s + X \rightarrow \tau v + X$	10%

- Three EW channel samples
- Optimise analysis for just W as it's the main signal

Sample	Relative rate
$W \rightarrow \tau \nu$	83%
$Z \rightarrow \tau \tau$	16%
$t\bar{t} \rightarrow \tau \tau X$	1%

• Two main background sources:

5

- Incorrectly identified vertices and misidentified muons
- Resonant meson background processes e.g. Ds $\rightarrow \phi \mu v$
- Using MC for signal and data sidebands as a proxy for background

Analysis Strategy

- Selection
 - Use a mix of 2 and 3 muon triggers to collect data
 - Apply loose preselection cuts based on di-muon mass, impact parameters and isolation related variables
 - Use MVA technique to discriminate between background and small signal
- Background
 - Mass cuts to remove resonant meson background processes e.g. Ds $\rightarrow \phi \mu v$
 - Use fit in data sidebands as a proxy for background
- Same approach for both HF and EW channels

6

Fit to three muon mass

MVA

- Several MVA types tried and optimised
 - Using XGBoost BDT to improve signal to background ratio
 - Recently re-opimised preselection cuts for both W and HF
- 17 inputs features
 - Vertex quality, tau displacement, tau kinematics and isolation related variables
 - Variables are not correlated with muon triplet mass
- Trained with signal vs sideband data
 - Training sample composed of two equal halves

700000

600000

500000

400000

300000

200000

100000

0

1.0

0.0

0.2

Counts

Background (train)

Background (test)

ATLAS work in-progress

0.6

Prediction

1.0

0.8

(train)

(test)

Signal

Signal

W BDT

0.4

Trigger Scale factor correction

- After reducing the background to signal ratio we want to extract the signal
 - Need the number of expected signal and background events -> need the trigger efficiencies
- Complex multi muon triggers with close together muons means MC not able to model well
 - Muons can have a small ΔR (relates to distance between muons). Minimum peaks at 0.06, see top plot
 - Wide spectrum of p_T (see bottom plot)
- Background is from sideband data so trigger efficiency is correct by definition
- Signals come from MC, trigger efficiency not reliable, so we need to calculate a scale factor correction
 - Main challenge for analysis

Trigger Scale factor correction

- Complex multi-muon triggers used to collect data, for example:
 - 3 muons each with $p_T > 4$ GeV (3mu4)
 - Muon with p_T > 11 GeV and another with p_T > 6 GeV, with combined mass of object < 2.9 GeV (mu11_mu6)
- Find the trigger efficiency with a factorised approach
 - Split trigger into individual trigger leg components
 - Leg 1 (mu11): > 11 GeV muon
 - Leg 2 (mu6): > 6 GeV muon
 - Multi-muon efficiency -> product of the single muon efficiencies for each leg and correction factors
- For di-muon case
 - Measure p_T efficiency for each muon ($\epsilon 1(p_T)$, $\epsilon 2(p_T)$)
 - This alone does not account properly for muons that overlap with each other (close in dR) so we also need a dR correction ($C12(\Delta R)$)
 - Combine to calculate efficiency $\epsilon_{di-muon} = \epsilon 1(p_T) \cdot \epsilon 2(p_T) \cdot C12(\Delta R)$

Trigger Scale factor correction

- To find the efficiency for each correction factor use a tag and probe method with muons from J/ ψ -> $\mu^+\mu^-$ signal
- Use a di-muon trigger to find event
 - Treat one muon as a 'tag' check if this passes a single muon trigger
 - If it does check if the other muon passes a single muon trigger – the 'probe'
 - Efficiency is the number of probes that pass divided by the total number of probes e.g.
 - $\varepsilon = \frac{N(single \ \mu \ trigger matched \ probe)}{\varepsilon}$

- Find yields (N) via unbinned ML fit to J/ ψ mass in case where probe is either triggered or not
- Ratio of yields gives efficiency vs probe \mathbf{p}_{T}
- Top plot is for $p_{\rm T}$ correction with bins of $p_{\rm T}\text{-}$ similar approach for dR
- Find the p_T efficiency (bottom plot) and dR correction then combine to calculate the total trigger efficiency

Expected Sensitivity

- Overall normalisation of signal template is treated as parameter of interest in fit
 - POI is interpreted as branching ratio
- Currently statistics only result without trigger scale factors
- W expected limit (stat only): 5.85x10⁻⁸
 - CMS (W) 5.6x10⁻⁸
- HF expected limit (stat only): 8.99x10⁻⁸
 - CMS (HF) 3.6x10⁻⁸
- W result comparable to CMS
- Result will be statistics limited

12

Summary

- All main analysis tools in place to find limit
- Obtained an expected limit for both EW and HF channels
- Before systematics expected limits look to be competitive with CMS
- Still to do:
 - Trigger scale factor calculations (current focus)
 - Systematics
 - Normalisation systematics (pileup weight and reconstruction scale factor) appear small ~3%
 - Others in process of being analysed e.g. jet and muon related variables
 - Trigger efficiencies will be largest systematic

Backup

 $\tau \rightarrow 3\mu$ analysis - Background fit

.6

$\tau \rightarrow 3\mu$ analysis - Signal fit

