

Design of an Ion-Acoustic Proof-of-Principle Experiment for ITRF/LhARA

<u>**M. Maxouti^{1,2,3}**</u>, P.R. Hobson⁴, O. Jeremy¹, B. Cox⁵, N. Dover¹, S. Gerlach⁶, J. Lascaud⁶, R.A. Amos⁵, C. Whyte⁷, J. Schreiber⁶, K. Parodi⁶, J.C. Bamber⁸, K. Long^{1,2,3}

1 Department of Physics, Imperial College London, UK

2 John Adams Institute for Accelerator Science, UK

3 Particle Physics Department, STFC Rutherford Appleton Laboratory, UK

4 School of Physical and Chemical Sciences, Queen Mary University of London, UK

5 Department of Medical Physics and Biomedical Engineering, University College London, UK

6 Department of Medical Physics, Ludwig-Maximilians-Universität München, Germany

7 Department of Physics, University of Strathclyde, UK

8 Institute of Cancer Research and Royal Marsden NHS Foundation Trust, UK

Laser-hybrid Accelerator for Radiobiological Applications

Proton/ion Transient Acquistic wave

Ionacoustic Process

Developing an Ion-Acoustics Proof-of-Principle Experiment

IMPERIAL

CALA

Laser-Driven Source

n python™

[4] Krausz, F. (2016). *cala*. cala-laser.de

IMPERIAL CALA LbARA LbARA

LION Beamline

Emerging Proton Beam

IMPERIAL

8

Acoustic Detection: Transducers

Center Frequency	3.5 MHz
Bandwidth	60%
Elements	1024 (32x32)
Pitch	0.3 mm

Linear Array

Center Frequency	5.3 MHz
Bandwidth	75%
Elements	192 (192x1)
Pitch	0.23 mm

Dose Calibration: Liquid Scintillator

Predicted Energy Depositions: SmartPhantom

IMPERIAL

Pressure Distribution & Acoustic Wave Propagation

IMPERIAL CALA LhAR Last Hydrid Accelerator for East Hydrid Accelerator for East Hydrid Accelerator for East Hydrid Accelerator for

[3] Freijo C, Herraiz JL, Sanchez-Parcerisa D, Udias JM. Dictionary-based protoacoustic dose map imaging for proton range verification. Photoacoustics

3D Pressure Reconstruction Iterative-Time Reversal Algorithm

Infinite bandwidth

Optical Reconstruction

Central column reconstruction

- Reconstructed irradiance through the central column
- Relative Geant4 energy depositions

Reconstruction across a row near the Bragg peak

Proposed Instrumentation The SmartPhantom

Conclusion

- LhARA aims to explore radiobiology in new regimens
- Dose mapping possible with ion-acoustics & liquid scintillator
- Iterative time-reversal algorithm: 3D reconstruction
- Calibrated pulse-to-pulse 3D dose mapping possible with the proposed instrumentation

Experimental results in a few months!

Thank you!