Spatially Fractionated Radiation Therapy **to optimise LhARA**

Josie McGarrigle

Imperial College London

LhARA

Laser-hybrid Accelerator for Radiobiological Applications

Flexible facility

- dedicated to the study of the biological response to ionising radiation.

Beam sizes

- allow for new radiotherapy modalities e.g. ultra-high dose rates and spatially fractionated radiotherapy delivered in these end stations.

SFRT

Imperial College

Literature Review Analysis

3 slit collimator & the associated distribution:

SFRT parameters:

The Geometric Parameters:

Width (µm) Spacing (µm) Valley Width (µm) % Peak Dose % Valley Dose

The Dosimetric Parameters:

Volume Average Dose (Gy) Peak Dose (Gy) Valley Dose (Gy) PVDR (Peak-Valley-Dose-Ratio)

% Valley Dose = 100*(Spacing/Width)

% Peak Dose = 100*(Width/Spacing)

PVDR= 100*(Peak Dose/Valley Dose)

Imperial College

TOPAS Set-Up

Literature vs Model correlation coefficients

LbARR-

Imperial College London

Literature vs Model correlation coefficients

Review vs In-Silico Results- MRT									Review vs In-Silico Results- MBRT										
Literature Tissue Sparing	-0.054	0.161	-0.156	-0.308	*	Pr 0.167	elimir. 0.012	nary D	ata _{0.248}	* -0.555	* -0.548	-0.290	-0.590	* 0.590	Pr -0.075	elimiı 0.390	nary D 0.695	* 0.493	0.75
Literature Tumour Control	0.450	-0.202	0.373	0.518	-0.518	-0.843	0.518	-0.247	-0.349	0.239	0.257	0.647	0.477	-0.477	-0.115	0.294	-0.071	* -0.696	0.50
Simulation Tissue Sparing	* -0.653	* -0.718	-0.016	-0.451	0.451	-0.120	-0.852	-0.741	-0.741	-0.517	* -0.513	-0.535	-0.388	0.388	* 0.567	* -0.729	0.229	0.229	0.00
Simulation Tumour Control	* 0.931	* 0.954	-0.060	* 0.645	* -0.645	-0.084	* 0.995	-0.445	-0.445	* 0.694	*	0.634	0.484	* -0.484	-0.570	* 0.999	0.320	0.320	-0.50
	Volume Average Dose	Peak Dose	Valley Dose	% Peak Dose	% Valley Dose	PVDR	Width	Spacing	Valley Width	Volume Average Dose	Peak Dose	Valley Dose	% Peak Dose	% Valley Dose	PVDR	Width	Spacing	Valley Width	-1.00

Literature vs Model correlation coefficients

Review vs In-Silico Results- MRT								Review vs In-Silico Results- MBRT								4.00			
Literature Tissue Sparing	-0.054	0.161	-0.156	* -0.308	0.308	0.167	0.012	0.228	0.248	* -0.555	* -0.548	-0.290	-0.590	0.590	-0.075	0.390	* 0.695	* 0.493	0.75
Literature Tumour Control	0.450	-0.202	0.373	0.518	-0.518	-0.843	0.518	-0.247	-0.349	0.239	0.257	* 0.647	0.477	-0.477	-0.115	0.294	-0.071	-0.696	0.50
Simulation Tissue Sparing	* -0.653 Preli	•0.718 iminai	-0.016 ry Dat	-0.451 a	0.451	-0.120	-0.852	-0.741	-0.741	* -0.517 Preli	-0.513 minar	•0.535 y Data	-0.388 a	0.388	* 0.567	* -0.729	0.229	0.229	0.00
Simulation Tumour Control	* 0.931	* 0.954	-0.060	* 0.645	-0.645	-0.084	* 0.995	-0.445	-0.445	* 0.694	* 0.925	* 0.634	* 0.484	-0.484	-0.570	* 0.999	0.320	0.320	-0.50
	Volume Average Dose	Peak Dose	Valley Dose	% Peak Dose	% Valley Dose	PVDR	Width	Spacing	Valley Width	Volume Average Dose	Peak Dose	Valley Dose	% Peak Dose	% Valley Dose	PVDR	Width	Spacing	Valley Width	-1.00

Lbserhybrid Accelerator for Laserhybrid Accelerator for

Imperial College

The Radiation Bystander Effect

Ref: Little et. al (2008) URL: https://tinyurl.com/cx5vakjf

Imperial College

SFRT and the Bystander Effect

Horizontal Plane

SFRT and the Bystander Effect

Horizontal Plane

SFRT and the Bystander Effect

Horizontal Plane

γh2AX Bystander Effect Detection

	Dose	4Gy	10Gy
Time post MRT	1 hour	x2	x2
	4 hours	x2	x2
	8 hours	x2	x2
	24 hours	x2	x2
			Imperial

Fluorescent Images

Dapi stain image (all nuclei)

γh2AX stain image (damaged nuclei)

Binning Dapi and yh2AX Images

Dapi co-ordinate histogram (all nuclei)

yh2AX co-ordinate histogram (damaged nuclei)

11

Gaussian Fitting

Bin calculation:

$$\% ext{ damaged cells} = \left(rac{\# ext{ damaged cells}}{\# ext{ total cells}}
ight) imes 100$$

Gaussian Fitting:

 $f(x) = A_1 \cdot e^{-rac{(x-\mu_1)^2}{2\sigma_1^2}} + A_2 \cdot e^{-rac{(x-\mu_2)^2}{2\sigma_2^2}} + A_3 \cdot e^{-rac{(x-\mu_3)^2}{2\sigma_3^2}}$

- f(x): The function describing the three-peak Gaussian curve as a function of x.
- *x*: The independent variable (input) at which the function is evaluated.
- A_i : Amplitude of the i^{th} Gaussian peak, controlling the height of each peak.
- μ_i: Mean or center of the ith Gaussian peak, specifying its position along the x-axis.
- σ_i : Standard deviation of the i^{th} Gaussian peak, determining its width or spread.

Imperial College

Peak Migration (prelim data)

Valley Migration (prelim data)

Conclusions

Literature Review

Emphasis on geometry- %Peak Dose/ % Valley Dose statistically significant for both SFRT modalities, indicator for magnetic focussing at LhARA.

Literature vs simulation

PDVR was different across both modalities, suggesting a linear model not suitable for predicting tissue effects for SFRT specifically when it comes to PDVR.

In Vitro Bystander Experiment

Peaks decreased over time as damage repaired, whereas Valleys stayed stagnant.

UNIVERSITY^{OF} BIRMINGHAM

Thanks!

For further questions: jmm119@ic.ac.uk

• Yolanda Prezado (and team)

• Kenneth Long

- Tony Price (and team)
- University of Birmingham MC40 specialists

Back-up

Literature Review Analysis

In order to explore the influences of different dosimetric parameters on the effectiveness of MRT and MBRT, searchable databases were created in order to evaluate normal-tissue sparing, tumour control and survival post irradiation with each modality.

Score	Normal-tissue Sparing Score (NTSS)	Tumour Control Score (TCS)
1	No radio-protection	No tumour control
2	Low level of radio-protection	Small amount of tumour control
3	Moderate radio-protection	Moderate tumour control
4	Fair radio-protection	Fair tumour control
5	Great radio-protection	Complete tumour control

Imperial College

In-Silico Models

Imperial College

London

Both the TCP and NTCP models used by TOPAS are EUD-based modifications of the conventional Linear-Quadratic model.

Tumour Control Probability (TCP)

The likelihood of a tumour being effectively controlled or eradicated by a radiation treatment.

$$TCP = \frac{1}{1 + \left(\frac{TD_{50}}{EUD^{Slope_{50}} \cdot \gamma_{50}}\right)}$$
$$EUD_T = \left(\sum_{i=1}^n v_i \cdot D_i^{\frac{1}{Slope_{50}}}\right)^{Slope_{50}}$$

Normal-tissue Complication Probability (NTCP)

The likelihood that normal tissue will experience complications due to radiation exposure during treatment.

$$NTCP = \frac{1}{1 + \left(\frac{TD_{50}}{EUD^{m \cdot \gamma}}\right)}$$

$$EUD_N = \left(\sum_{i=1}^n v_i \cdot D_i^{1/m}\right)^m$$

