

Rutherford Appleton Laboratory

Precision measurement of the top quark mass using boosted $t\bar{t}$ events with the ATLAS detector

Elliot Watton

10th April 2024 Joint APP, HEPP and NP IOP conference

Why measure the top-quark mass?

- The top quark mass, $m_{\rm t}$, is an important parameter of the Standard Model.
- $m_{\rm t}$ affects the dynamics of elementary particles via loop diagrams.
- Precision measurements of m_t provide information for global fits of electroweak parameters

 \rightarrow Can assess consistency of SM and probe its extensions.

University of Glasgow

Science and Technology Facilities Council

Rutherford Appleton Laboratory

Higgs pole mass $M_{\rm h}$ in GeV

LAS

Why use boosted top quarks?

• Firstly, what is a "boosted" top quark? Consider a hadronically decaying top quark, $t \to Wb \to q\bar{q}'b$, where we have three jets:

- Why use these boosted top quarks?
 - Less ambiguity in assigning jets than in the resolved (not boosted) case.
 - Increasingly higher energies at the LHC lead to more boosted top quarks relative to resolved top quarks.

Analysis strategy

Rutherford Appleton Laboratory

- Measure m_t using kinematic reconstruction of decay products.
- Looking at the lepton+jets channel, where events have at least one large-R reclustered top-jet with:
 - $\circ p_T > 355 \text{ GeV}$
 - 120 GeV < $m_{top-jet}$ < 220 GeV
 - At least two sub-jets, at least one of which must be b-tagged.
- Use the mean of the top-jet's mass distribution, $\overline{m_{top-jet}}$, as the m_t sensitive variable.

Elliot Watton

Analysis strategy

.5 GeV

- Measure $m_{\rm t}$ using kinematic reconstruction of decay products.
- Looking at the lepton+jets channel, where events have at least one large-R reclustered top-jet with:
 - $p_T > 355 \text{ GeV}$
 - 120 GeV < $m_{\rm top-jet}$ < 220 Ο
 - At least two sub-jets, at le 0
- Use the mean of the top-jet's I

ATLAS work-in-progress

s = 13 TeV, 140 fb

$$\overline{m_{\rm top-jet}}(m_{\rm t}) = A + B(m_{\rm t} - 172.5)$$

A and B are constants found from fits to $m_{\rm t}$ varied MC samples (+ backgrounds)

170

169.8

Can we reduce the impact of our uncertainties?

- For a precision measurement, we need a way to reduce the impact the systematic uncertainties!
- Reconstruct the W boson mass distribution, m_W , inside the top-jet to reduce the impact of jet energy scale (JES) uncertainties. This variable is **independent** of m_t .
- Use the two light-quark jet constituents with the highest $p_{\rm T}$ inside the top-jet.
- Idea is to use a profile likelihood fit to extract m_t, where uncertainties enter as nuisance parameters (NP)
 → 1 systematic uncertainty = 1 NP

Another observable

- When simulating signal $t\bar{t}$ events, a model must be chosen for how gluons radiate during the decay.
- There are two "best" choices for the model. These impact the radiation from the *b*-quark in the decay in different ways leading to potentially different m_t results → an uncertainty is associated to the choice of model.

Profile-likelihood fitting approach

- Construct the full likelihood as the product of likelihoods for each observable, where:
 - The top mass sensitivity comes from the $m_{top-jet}$ distribution,
 - Systematic constraints enter from the $m_{\rm W}$ and $m_{t^{\rm lep}+i}$ distributions.

$$L\left(\overline{m_{\text{top-jet}}}^{\text{data}}, n_{m_{\text{W},j}}^{\text{data}}, n_{m_{t^{\text{lep}}+j},k}^{\text{data}} \middle| m_{\text{t}}, \mu_{t\bar{t}}, \underline{\theta} \right) = G\left[\overline{m_{\text{top-jet}}}^{\text{data}} \middle| \overline{m_{\text{top-jet}}}(m_{\text{t}}, \underline{\theta}), \sigma_{\overline{m_{\text{top-jet}}}} \right] \\ \times \prod_{j} P\left(n_{m_{\text{W},j}}^{\text{data}} |\nu_{j}(\mu_{t\bar{t}}, \underline{\theta})\right) \\ \times \prod_{k} P\left(n_{m_{t^{\text{lep}}+j},k}^{\text{data}} \middle| \rho_{k}(\mu_{t\bar{t}}, \underline{\theta})\right) \\ \times \prod_{i} G(\alpha_{i} | \theta_{i}, 1)$$

Precision?

Source	Uncertainty (GeV)		This is just a sub-set of	
	$\overline{m_{\text{top-jet}}}$ only fit	Full fit	included in the analysis	
JES	± 1.49	± 0.43	~3x reduction	
Radiation (ISR and FSR)	± 0.87	± 0.22	~4x reduction	
Recoil	± 0.17	± 0.10 -	Would be	
eat reduction in uncertainty impac	ts by including may ar		to the fit! Would be ± 0.54 GeV wit including $m_{t^{16}}$	

• Precision on m_t of < 1 GeV achieveable!

٠

First look at the data

• Start by fitting only m_W distribution. Fit is blind to m_t .

- See that the data is well modelled!
- Some shape difference between data & MC seen pre-fit, but within uncertainties.
- The fit can adjust the model to better fit the data!

Elliot Watton

- Analysis goal is to perform a precise measurement of m_t using boosted $t\bar{t}$ events.
- Used a profile-likelihood fit to extract $m_{\rm t}$ where:
 - \circ $\overline{m_{top-jet}}$ is the m_t sensitive variable.
 - $\circ m_W$ and $m_{t^{lep}+i}$ distributions used to reduce the impacts of the systematics.
 - Great expected precision and good data-MC agreement!
- Still need to perform some more fit studies before unblinding.
- Thank you for listening!

Rutherford Appleton Laboratory

Backup

Elliot Watton

Selection criteria (before observable selections)

Sample yields (pre-fit)

- Selection criteria for large-R RC jets (slide 2),
- 135 GeV $< m_{top-jet} < 205$ GeV

Sample	Yield
tī	72000 ± 10000
Single-t	1290 ± 510
tĪV	740 ± 100
Multijet	450 ± 290
W+jets	310 ± 120
Z+jets	62 ± 31
Diboson	28 ± 14
Total pred	75000 ± 10000

Events passing $m_{\rm W}$ selection:

- Selection criteria for large-R RC jets (slide 2),
- $60 \text{ GeV} < m_W < 105 \text{ GeV},$
- Require at least three sub-jets, $N_{\text{subjet}} \geq 3$.

Sample	Yield
tī	38000 ± 5800
Single-t	420 ± 190
tĪV	330 ± 50
Multijet	170 ± 110
W+jets	59 <u>+</u> 22
Z+jets	9 ± 5
Diboson	5 <u>+</u> 3
Total pred	39000 ± 5800

Note: These selections are not orthogonal

Events passing $m_{t^{\text{lep}}+i}$ selection:

- $150 \text{ GeV} < m_{t^{1ep}+i} < 270 \text{ GeV},$
- $\Delta R(t^{\text{lep}}, j) < 0.5,$
- Need at least one extra jet, $N_{\text{addjets}} > 0$.

Sample	Yield
tī	2340 ± 420
Single-t	53 <u>+</u> 25
tĪV	51 <u>+</u> 7
Multijet	23 <u>+</u> 15
W+jets	21 ± 9
Z+jets	5 <u>+</u> 3
Diboson	2 ± 1
Total pred	2500 ± 420

ATLAS work-in-progress

Elliot Watton