

Transformer Neural Networks for Large Radius Jet Classification and Regression for Boosted Higgs Bosons at the ATLAS Detector

Andrius Vaitkus

IOP APP, HEPP & NP 2024

andrius.vaitkus.16@ucl.ac.uk

Identifying *b*-jets (*b-tagging*) is important for studying heavy particles:

- \circ H \rightarrow bb, t \rightarrow Wb are main decay modes
- Separating *b*-jets from overwhelming background is crucial
- b-tagging takes advantage of unique b-quark properties:
 - \circ Long lifetime (~10⁻¹² s) of *b*-hadrons
 - \rightarrow displaced vertices
 - $\circ~$ High mass (~5 GeV)
 - \rightarrow higher p_T
 - \rightarrow higher multiplicity
 - \rightarrow large transverse impact parameter

Large-R Jet H→bb Tagging

- H→bb tagging is especially important for identifying **boosted Higgs bosons** decaying to $b\overline{b}$
 - $\,\circ\,$ Boosted H→bb events could uncover signs of BSM physics
 - $\circ~$ For high p_T, b-jets are more collimated
 - \rightarrow treated as one Large-R jet
- Goal: separate H(bb) signal from H(cc̄), hadronic top decays, QCD
 O H→cc tagging work also ongoing but not covered in this talk
- Improving our measurements of jet kinematic variables is also crucial
 - $\circ~$ Can be used in calibration efforts or searches
 - $\circ~$ Most important variables to learn: jet mass, p_{T}

Jet mass distributions for jets from SM predictions (from $H \rightarrow bb study$)

IOP APP, HEPP & NP 2024

Andrius Vaitkus

GN2X Model for Large-R Jet Tagging

Schematic network architecture of GN2/GN2X (ref)

• GN2:

- Consituent based tagger
- Uses jet and track information
- Combines transformer architecture with auxiliary training objectives
- **GN2X** modifies existing GN2 architecture for Large-R Jets
 - Trained on 60M jets in 4 categories: $H \rightarrow bb$, $H \rightarrow cc$, Top, QCD

jet- and track-level information concatenation

GN2X Performance for H→bb

where $f_{\rm Hcc} = 0.02$, $f_{\rm top} = 0.25$

• D_{Xbb} :

Previous state-of-the-art Xbb tagger

• 2 VR D_b^{GN2}

o GN2 architecture

- $\circ~$ 2 leading VR jets are b-tagged
- $D_{\mathrm{Hbb}}^{\mathrm{GN2X}}$

• New large-R jet tagger

Performance:

- GN2X outperforms both previous taggers across all $H(b\overline{b})$ efficiencies
- At 50% $H(b\bar{b})$ signal efficiency, compared to D_{Xbb} :
 - **1.6x** increase in top rejection
 - 2.5x increase in QCD (multijet) rejection

Adapting GN2X for Regression

- Transformer-based models can also be used to improve reconstruction of jet kinematic variables
 - One potential use: improve calibration after tagging
 - In addition, help improve sensitivity for boosted Higgs studies
- For that, **modifications to GN2X**:
 - $\circ~$ Replaced all main and auxiliary tasks with jet mass, p_T regressions
 - Use same training data, but remove resampling stage from preprocessing
 - Add calorimeter information (charged + neutral) instead of only using tracks
- Regression performance evaluated on jets that pass 70% WP H \rightarrow bb tagger!

GN2X Performance for Regression

- Predicted peak is **28.5% narrower**
- Predicted peak is 0.2% further from 1 •

- Predicted peak is 26.6% narrower
- Predicted peak is 0.3% closer to 1

p_T Regression Performance for SM Samples

Great p_T regression performance on SM samples (not used in training)!

- Response resolution improvement from 26% (QCD) to 30% (Z \rightarrow bb) compared to reco p_T
- Reduced response bias for all SM samples

Mass Regression Performance for SM Samples

Mass regression improves resolution compared to reco, but introduces small bias:

- Response resolution improvement from 14% (QCD) to 26% ($Z \rightarrow bb$) compared to reco mass
- Response peak median shifted away from 1
 - \circ Worst for QCD, median at 0.99 for m_{reco}, at 1.02 for m_{predicted}
 - Not much, but still important to look into

Closer Look at Mass Regression for QCD

QCD

- QCD jet mass regression is important for improving background modelling
 - For **analyses**, region around m_{Hiags} is 0 most important
 - For **calibration** efforts, need consistent performance across all mass ranges
- **Results:**
 - Improved resolution across all masses
 - Similar bias for QCD jets close to m_{Higgs} Increased bias in 40-60 GeV region
- Requires further model tuning, more QCD training jets (WIP)
 - Ideally get more QCD(bb)

Potential Sensitivity Improvement

- To estimate potential sensitivity improvement, calculate reduction in QCD jets for fixed Higgs efficiency Need to also verify that QCD distribution is unaffected
- Results:
 - For 75% Higgs jets efficiency, using mass regression results in **10.1% less QCD jets**
 - Correlates to approx. 5-6% sensitivity improvement Ο
 - Predicted mass peak could be further improved Ο

- Large-R jet classification using transformer-based architecture provides significant improvement over previous results
 - **1.6x** increase in top rejection
 - **2.5x** increase in QCD rejection
- Regression provides substantial improvement in resolution:
 - $\circ~$ Over **25%** improvement in resolution for jet p_T compared to reco
 - **14%** improvement for QCD jet mass
 - 22% improvement for Higgs jet mass
- Using new predicted masses allows to reduce QCD background by 10% for 75% Higgs efficiency
 Translates roughly to 5-6% sensitivity improvement
- Work on $H \rightarrow bb$ tagger ongoing, with plan to provide update model for Run 3 data
- Aiming to make regression model available to entire collaboration and calibrations soon!

Thank you for listening!

Backup

Technical info

UCL

Jet Collections:

- Reco: AntiKt10UFOCSSKSoftDropBeta100Zcut10
- Truth: AntiKt10TruthSoftDropBeta100Zcut10Jets

Frameworks used:

- DAODs processed with <u>training-dataset-dumper</u>
 - Produces intermediate ntuples
- Training files created with <u>umami-preprocessing</u> (UPP)
 - Modular preprocessing pipeline for jet tagging
 - Uses <u>atlas-ftag-tools</u> package extensively
 - $\circ~$ Data prep, resampling and splitting data
- Training done using <u>Salt</u>
 - General-purpose framework to train state-of-the art jet flavour tagging algorithms
 - Model architecture and training fully configured via YAML config files / CLI
 - Up-to-date documentation, docker image support, and extensive CI tests
 - Flexible support for many types of input objects/formats and network architectures

GN2X Mass Sculpting

Closer Look at Mass Regression for $Z \rightarrow bb$

