

Search for Higgs Boson Decays to a Z Boson and a Light Hadronically Decaying Resonance

Chonghao Wu

Joint APP, HEPP and NP IOP conference 2024

Motivation

- New pseudoscalar (a) predicted by various BSM
 - a could have a large coupling to the observed Higgs boson
 - a can decay to SM particles(qq, gg, γγ, ll)
- Axions
 - Solving the strong CP problem
 - Axion-like particle (ALP): more general particles sharing some properties with axions
- Extensions to the SM Higgs sector
 - Motivated by SUSY, CP problem in QCD...
 - 2HDM(+S): The two Higgs-doublet model (with an additional scalar singlet)
- Current searches
 - Mostly focusing on decays of a to leptons or heavier quarks
 - Few searches for $H \rightarrow Za$
- Previous round of analysis published in 2020
 - Phys. Rev. Lett. 125 (2020) 221802
 - Analysis sensitivity limited by background MC statistics

Aim

- Search for a light resonance (m < 4 GeV) produced through $H \rightarrow Za$
 - $a \rightarrow$ hadronic decay, reconstructed as a single jet
 - $Z \rightarrow$ leptonic decay
 - Background: mainly from Z + jets

- Full Run 2 data from ATLAS
- Higher statistics POWHEG Z+jets MC samples instead of SHERPA
- Dedicated neural network for background reweighting
- New strategy for systematic uncertainty analysis

Strategy

Background Reweighting

- Use high statistics POWHEG Z+jets MC samples instead of Sherpa
 - Powheg is less accurate for Z+jets than Sherpa, but it has many more events
- Reweight the bkg to match the data, improve the modelling of event kinematics and jet variables

Neural Network

- The aim of NN is to estimate the ratio of data to bkg probability density functions: r(X)=f_{data}(X)/f_{bkg}(X)
- Dedicated loss function for Log-Likelihood Ratio Estimation, requires no knowledge of pdfs of bkg and data(<u>arXiv:1911.00405 (2019)</u>)
- Blind region: 120 GeV < $m_{\rm H}$ < 140 GeV, to avoid bias from possible signals
- Training variables: 11 in total.
 - Final state invariant mass, kinematic variables, 6 jet substructure variables

Background Reweighting

- Data/bkg ratio before and after reweighting
 - The RW improves the data-MC agreement a lot

Background Reweighting

- Z-axis: number of MC events
- Even the events in the blind region are excluded for the NN training, the NN can still understand the structure and give reasonable results in this region

Reweighting result (Powheg)

• The reweighting NN works well for all 11 training variables

Reweighting result (Sherpa)

- Trained another reweighting NN for Sherpa background samples
- The NN can achieve similar level of data-MC agreement as nominal
- The difference between Sherpa and Powheg is added as one of systematic uncertainties

Systematic Uncertainties

- Background systematic uncertainties:
 - The experimental and theoretical uncertainties are replaced by 3 **background modelling uncertainties**:
 - Data-driven, estimated from the data-MC difference in the Control Region.
 - From different choice of generator
 - From different choice of the reweighting NN
 - The impact of **statistical uncertainty** on bkg estimation reduced from 3.5% to 0.22% (negligible)
- Signal systematic uncertainties:
 - Experimental: Jet, tracking, pile-up, leptons, Trigger and vertex scale factors uncertainties. Following the latest recommendations
 - Theoretical: Parton Shower and Hadronization

Final State Invariant Mass

- Classification: set cut at NN output, bkg rejection $99\% \rightarrow 99.3\%$
- The significance (S/VB) in the SR increased
 - Bkg: $83k \rightarrow 92k$
 - 0.5 GeV signal: $27k \rightarrow 50k$

Exclusion Limits and ALP Interpretation

- ~5 times improvement in the expected limits on the BR(H \rightarrow Za)
 - Higher statistics MC sample
 - Novel tools for NN
 - Instead of using cut-and-count method, we used shape-fits

• Set expected limits on the effective coupling $C_{Zh}^{e\!f\!f}$ / Λ for the Axion-like particle

Na.

- Search performed for $H \rightarrow Za \rightarrow II + jet (m_a < 4GeV and hadronically decay)$
- Dedicated NN used for background reweighting
- Significantly reduced the background statistical uncertainty, which is the main factor limiting the previous analysis sensitivity
- Upper limits set for exclusive gluon or quark decays, ~5 times improvement
- Set expected limits on the effective coupling for the Axion-like particle

Changes

- Reweighting
 - 3D Histograms \rightarrow 11D Neural Network
- Regression & Classification
 - TMVA \rightarrow Keras
- Bkg estimation
 - ABCD Method ->Control region
- Fit
 - cut&count -> shape fit
- Additional interpretation
 - Axion

• SHERPA Z+jets \rightarrow POWHEG Z+jets

Bkg modelling

- Signal modelling
 - NLO \rightarrow NNLO
- Derivation
 - FTAG2 \rightarrow HDBS3
- Event selection
 - EMTopo \rightarrow EMPflow
 - recent recommended tools

Reweight variables

Variable	Description				
m _{llj}	Invariant mass				
n _{tracks}	Number of tracks				
p_{T_H}	Transverse momentum of reconstructed Higgs boson				
P_{T_Z}	Transverse momentum of reconstructed Z boson				
p_T^{jet}	Transverse momentum of the calorimeter jet				
$p_{\rm T}^{\rm lead track}/p_{\rm T}^{\rm tracks}$	Ratio of transverse momentum of the leading track to total				
$\Delta R^{\text{lead track, calo jet}}$	ΔR between the leading track and the calorimeter jet axis				
$ au_2$	NSubJettiness 2				
$U_1(0.7)$	$U_1(0.7)$ Modified energy correlation function $M_2(0.3)$ Ratio of modified energy correlation functions				
$M_2(0.3)$					
angularity(2)	Angularity				

Classification NN

- To discriminate signal from the background
- NN Input: regression output + jet variables

Signal Region: NN output > 0.93

- ~99% bkg events are rejected
- Relatively high significance for low mass signals

Classification NN

Fit

• Fit parameters:

- μ: signal strengh
- B: background normalization
- a_b : background shape uncertainty
- Δμ, Δσ: uncertainties of mean and sigma of nominal signal histograms
- a_{Lumi} : Luminosity uncertainty

• 0.5 GeV example

Signal Modelling

- Fit the m_{IIj} distribution with a Gaussian function for each signal
- Calculate the fit parameters (mean and sigma) of histograms
- The fitted mean and sigma will be added in the fit model

Systematic Uncertainties

3 background systematic uncertainties

- Data-driven, estimated from the data-MC difference in the Control Region.
- From different choice of MC generator.
- From different choice of the reweighting NN. Using the 2nd best nominal bkg reweighting NN.

Signal systematic uncertainties:

- Experimental: Luminosity, Pile up, Jet-related uncertainties
- Theoretical: Parton shower and Hadronization

Fit Model

	Mass (GeV)	Events N ($\cdot 10^3$)	μ	σ	σ_N (%)	σ_{μ}	σ_{σ}
→gg	0.5	58	131.5	5.0	20	1.5	0.7
	1.0	33	130.5	5 .1	20	1.5	0.7
	1.5	24	130.7	5.1	20	1.5	0.7
	2.0	21	130.1	5.3	20	1.5	0.7
	2.5	12	129.7	5.5	20	1.5	0.7
	3.0	6.5	128.4	5.5	20	1.5	0.7
→qq	3.5	3.9	127.4	5.6	20	1.5	0.7
	4.0	2.5	126.6	5.2	20	1.5	0.7
	Mass (GeV)	Events N $(\cdot 10^3)$	μ	σ	σ_N (%)	σ_{μ}	σ_{σ}
	1.5	28	129.4	5.4	21	1.5	0.7
	2.0	19	128.9	5.5	21	1.5	0.7
	2.5	13	129.1	5.8	22	1.4	0.7
	3.0	7.9	127.8	5.5	24	1.7	0.7
	3.5	5.6	127.0	5.0	29	1.4	0.7
	4.0	0.61	125.1	5.5	29	1.5	0.7

ATLAS Work In Progress

Reweighting NN

• Minimize the cost function:

$$\mathcal{J}(\mathsf{u}) = \mathsf{E}_0 \left[\phi(\mathsf{u}(X)) + \mathsf{r}(X) \psi(\mathsf{u}(X)) \right] = \mathsf{E}_0 \left[\phi(\mathsf{u}(X)) \right] + \mathsf{E}_1 \left[\psi(\mathsf{u}(X)) \right]$$

$$\mathsf{E}_0, \mathsf{E}_1: \text{ expectation with respect to } \mathsf{f}_0, \mathsf{f}_1: \mathsf{f}_0, \mathsf{f}_1: \mathsf{pdfs of bkg and data}$$

 ϕ and ψ are designed to satisfy: the global minimizer is equal to $u(X)=\omega(r(X))$, $\omega(r)$ is called the transformation function.

• In the case of Log-Likelihood Ratio Estimation:

 $\omega(\mathbf{r}) = \log \mathbf{r} \longrightarrow \phi(z) = e^{0.5z}, \ \psi(z) = e^{-0.5z}$

u(X) estimates log-likelihood ratio, e^{u(X)} estimates likelihood ratio

• In practice, $\mathcal{J}(\mathbf{u}) \approx \hat{\mathcal{J}}(\theta) = \frac{1}{n_0} \sum_{i=1}^{n_0} \phi(\mathbf{u}(X_i^0, \theta)) + \frac{1}{n_1} \sum_{i=1}^{n_1} \psi(\mathbf{u}(X_i^1, \theta))$ $\theta : \text{NN parameters}$ $\mathbf{v}(\mathbf{X}, \theta) : \text{NN output}$ The cost function only depends on two datasets and $\omega(\mathbf{r})$, requires no knowledge of pdfs \mathbf{f}_0 , \mathbf{f}_1

Optimization of $u(X) \rightarrow Classical optimation of NN parameters (<math>\theta$)

arXiv:1911.00405 (2019)