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Motivation 2

• Current searches
• Mostly focusing on decays of a to leptons or heavier quarks
• Few searches for H→Za

ATL-PHYS-PUB-2021-008

• New pseudoscalar (a) predicted by various BSM
• a could have a large coupling to the observed Higgs boson
• a can decay to SM particles(qq, gg, γγ, ll)

• Axions
• Solving the strong CP problem
• Axion-like particle (ALP): more general particles sharing 

some properties with axions
• Extensions to the SM Higgs sector

• Motivated by SUSY, CP problem in QCD...
• 2HDM(+S): The two Higgs-doublet model (with an 

additional scalar singlet)

• Previous round of analysis published in 2020 
• Phys. Rev. Lett. 125 (2020) 221802
• Analysis sensitivity limited by background MC statistics

https://cds.cern.ch/record/2758783/files/ATL-PHYS-PUB-2021-008.pdf
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.221802


Aim 3

•  Search for a light resonance (m < 4 GeV) produced through H→Za
• a → hadronic decay, reconstructed as a single jet
• Z → leptonic decay
• Background: mainly from Z + jets

• Full Run 2 data from ATLAS

• Higher statistics POWHEG Z+jets MC samples instead of SHERPA

• Dedicated neural network for background reweighting

• New strategy for systematic uncertainty analysis 



Strategy

 Pre-selection
>2 tracks

Same-Flavor 
Opposite-Sign 
lepton pair

Background 
reweighting

previous: 3-D histograms

11-D Neural Network

 Regression NN

Classification NN

Statistical analysis

Exclusion limits

Discriminate signal from bkg

a mass prediction 
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Background Reweighting 5

Neural Network
• The aim of NN is to estimate the ratio of data to bkg probability 

density functions: r(X)=fdata(X)/fbkg(X)

• Dedicated loss function for Log-Likelihood Ratio Estimation, requires 
no knowledge of pdfs of bkg and data(arXiv:1911.00405 (2019))

• Blind region: 120 GeV < mH < 140 GeV, to avoid bias from possible 
signals

• Training variables:  11 in total.
• Final state invariant mass, kinematic variables, 6 jet 

substructure variables

• Use high statistics POWHEG Z+jets MC samples instead of Sherpa
• Powheg is less accurate for Z+jets than Sherpa, but it has many more events

• Reweight the bkg to match the data, improve the modelling of event kinematics and jet variables

before bkg reweighting

https://arxiv.org/abs/1911.00405


Background Reweighting 6

pre RW post RW

• Data/bkg ratio before and after reweighting
• The RW improves the data-MC agreement a lot
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Background Reweighting 7

pre RW post RW

• Z-axis: number of MC events
• Even the events in the blind region are excluded for the NN training, the NN can still understand the 

structure and give reasonable results in this region

blind region



Reweighting result (Powheg)

mH
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pTjetΔR

• The reweighting NN works well for all 11 training variables



Reweighting result (Sherpa)
mH ΔR pTjet

• Trained another reweighting NN for Sherpa background samples
• The NN can achieve similar level of data-MC agreement as nominal
• The difference between Sherpa and Powheg is added as one of systematic uncertainties
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Systematic Uncertainties 10

• Background systematic uncertainties:
• The experimental and theoretical uncertainties are 

replaced by 3 background modelling uncertainties:
• Data-driven, estimated from the data-MC difference in 

the Control Region.
• From different choice of generator
• From different choice of the reweighting NN

• The impact of statistical uncertainty on bkg estimation 
reduced from 3.5% to 0.22% (negligible)

• Signal systematic uncertainties:
• Experimental:  Jet, tracking, pile-up, leptons, Trigger 

and vertex scale factors uncertainties. Following the 
latest recommendations

• Theoretical: Parton Shower and Hadronization



Final State Invariant Mass 11

after full event selection
(pre-selection & Classification)

BR(H→Za) = 100%

PhysRevLett.125.221802

• Classification: set cut at NN output, bkg rejection 99% → 99.3%
• The significance (S/√B) in the SR increased 

• Bkg: 83k → 92k  
• 0.5 GeV signal: 27k → 50k

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.221802


• Set expected limits on the  
effective coupling                for 
the Axion-like particle

Exclusion Limits and ALP Interpretation 12

• ~5 times improvement in the expected limits on the BR(H→Za)
• Higher statistics MC sample
• Novel tools for NN
• Instead of using cut-and-count method, we used shape-fits /eff

ZhC



Summary 13

• Search performed for H→Za→ll+jet (ma < 4GeV and hadronically decay) 

• Dedicated NN used for background reweighting

• Significantly reduced the background statistical uncertainty, which is the main factor limiting the 
previous analysis sensitivity 

• Upper limits set for exclusive gluon or quark decays, ~5 times improvement

• Set expected limits on the effective coupling for the Axion-like particle



Back up



Changes

15Chonghao Wu

§ Bkg modelling
• SHERPA Z+jets → POWHEG  Z+jets

§ Signal modelling
• NLO → NNLO

§ Derivation
• FTAG2 → HDBS3

§ Event selection
• EMTopo → EMPflow
• recent recommended tools

§ Reweighting
• 3D Histograms → 11D Neural Network 

§ Regression & Classification
• TMVA → Keras 

§ Bkg estimation
• ABCD  Method ->Control region

§ Fit
• cut&count -> shape fit

§ Additional interpretation
• Axion



Reweight variables 16



Classification NN 17

• To discriminate signal from the background
• NN Input: regression output + jet variables

Signal Region:  NN output > 0.93
• ~99% bkg events are rejected
• Relatively high significance for low mass signals
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Classification NN



Fit 19

• Fit parameters: 
• μ: signal strengh
• B: background normalization 
• ab : background shape uncertainty
• Δμ, Δσ: uncertainties of mean and 

sigma of nominal signal histograms
• aLumi : Luminosity uncertainty

• 0.5 GeV example



Signal Modelling 20

• Fit the mllj distribution with a 
Gaussian function for each signal 

• Calculate the fit parameters (mean 
and sigma)  of histograms

• The fitted mean and sigma will be 
added in the fit model

0.5 GeV sample



Systematic Uncertainties 21

3 background systematic uncertainties
• Data-driven, estimated from the data-MC 

difference in the Control Region.

• From different choice of MC generator. 

• From different choice of the reweighting NN. 
Using the 2nd best nominal bkg reweighting NN.

Signal systematic uncertainties:
• Experimental: Luminosity, Pile up, Jet-related 

uncertainties

• Theoretical: Parton shower and Hadronization



Fit Model 22

a→gg

a→qq



Reweighting NN 23

• Minimize the cost function:

scalar functions
E0, E1: expectation with respect to f0, f1
f0, f1: pdfs of bkg and data

• In practice, 

θ : NN  parameters

samples from bkg, data

ϕ and ψ are designed to satisfy: the global minimizer is equal to u(X)=ω(r(X)),
ω(r) is called the transformation function.
• In the case of Log-Likelihood Ratio Estimation:

 

Optimization of u(X) → Classical optimation of NN parameters (θ) 

u(X,θ): NN output

The cost function only depends on 
two datasets and ω(r), 
requires no knowledge of pdfs f0, f1 

u(X) estimates log-likelihood ratio, eu(X) estimates likelihood ratio

arXiv:1911.00405 (2019)

https://arxiv.org/abs/1911.00405

