

A Top Friendship

Measurement of ttH production in the H(bb) decay channel with Transformer Networks

Levi Evans | Pedro Teixeira-Dias | Sam Waterhouse

10.04.2024

Joint APP, HEPP and NP IOP conference

Introduction and motivation | Why $t\bar{t}H$?

• Measuring $t\bar{t}H$ gives us a window into the top-Higgs coupling (largest in the SM)

- Important test of the Standard Model and EW symmetry breaking
- Direct experimental probe of top Yukawa coupling at tree-level
- Opportunity to further probe Effective field theories
 - ⇒ Probe Wilson coefficients as a function of Higgs p_T in Simplified Template cross-sections (STXS) framework
- Possible to probe CP structure of fermionic Higgs couplings

$$\implies \mathcal{L}_{t\bar{t}H} = -\kappa'_t y_t \phi \bar{\psi}_t (\cos \alpha + i\gamma_5 \sin \alpha) \psi_t$$

$$\mathcal{L}_{\mathrm{EFT}} = \mathcal{L}_{\mathrm{SM}} + \sum_{d} rac{C_{d}}{\Lambda^{d-4}} \mathcal{O}_{d}$$

Introduction and motivation | Analysis challenges

- The $H \rightarrow b\bar{b}$ decay channel offers good stats. in high $\mathcal{P}T$ regimes
- $t\bar{t}H(H \rightarrow b\bar{b})$ challenging measurement to perform
- \circ Large irreducible $t \bar{t} + b \bar{b}$ background
- Use of leptonic decays mitigates large QCD multi-jet backgrounds
- Last measurement limited by systematic uncertainties in modelling of dominant $t\bar{t}$ background (JHEP06(2022)097)
- Many improvements made to analysis design and modelling uncertainties

Introduction and motivation | Existing Measurements

- Talk today will show details on the **improved Full Run 2 analysis** (i.e a re-analysis)
- Increased interest in the improved measurement due to latest CMS PAS

Analysis Overview | What has changed from the previous measurement?

- Based on Athena release 21, with improved object definitions and detector reconstruction
 - \Rightarrow PFlow jets (instead of EMTopo)
 - \Rightarrow DL1r b-tagger (instead of MV2c10)
 - ⇒ Full JER uncertainty model with pseudo-data smearing
- Loosened pre-selection to increase statistics
- State of the art $t\bar{t} + b\bar{b}$ nominal and systematics model developed for this analysis (<u>ANA-PHYS-PUB-2022-006</u>)
 - ⇒ Corresponding newly developed systematic approach to $t\bar{t} + \ge 1c$ and $t\bar{t} + \text{light}$

Analysis Overview | Strategy, Event selection and Channel definitions I

- Events recorded using lowest unprescaled single-lepton triggers Ο
- Consider two channels, based on decays of W-boson in tt system Ο
 - = 2 leptons: Dilepton channel \Rightarrow
 - = 1 lepton: Single-lepton channel (resolved + boosted) \Rightarrow
- Event selection loosened w.r.t previous analysis ($\geq 3j, 3b@70, \geq 5j, 4b@70$) Ο
 - Allows for better control of each tt + jets background components \Rightarrow

Channel	Jets	b-tags (DL1r)		e/μ	au	RC Jets *	
		70% WP	85% WP				
dilepton	≥ 3	≥ 2	≥ 3	2	0	-	
1 + jets resolved	≥ 5	≥ 3	≥ 3	1	≤ 1	-	 Reclustered (RC) jets
l + jets boosted	≥ 4	-	≥ 3	1	≤ 1	≥ 1	$p_T \ge 300 \text{ GeV}$

Analysis Overview | Strategy, Event selection and Channel definitions II

- Region definition performed via multi-class NN classifier (transformer encoders)
 - ⇒ Classification transformer classifies events according to 6 classes (Signal Region (SR) and 5 Control Regions (CRs))
 - \Rightarrow Each CR enriched in relevant flavour component of $t\bar{t}$ + jets
 - Events classified as ttH enter reconstruction transformer and assigned STXS bin

Analysis Overview | Strategy, Event selection and Channel definitions III

- Transformer utilises Softmax function in final layer
 - ⇒ Allows for category outputs to be interpreted as probabilities for each class
 - ⇒ These are used in region construction, where maximal scores employed for region assignment
 - "Discriminant" formula used to integrate outputs for more physical classification scores,
 i.e. weighted to theoretical cross-sections

Number of events for category j in training sample

Consider all other classes against which we want to discriminate class i

Analysis Overview | MVA Algorithms | Classification Transformer

- Transformers central to the analysis design
- Trained on low-level object feature variables, as opposed to higher-level event variables used in prev. analysis iterations (reduces feature engineering task)
 - ⇒ 4-vectors of all final state objects, PCBT scores, MET, lep. type/charge
- Utilises permutation-invariant architectures & attention mechanisms
- Five-fold cross-validation employed for improved training statistics

- Trained independently for each channel in pre-selection region of phase-space
- AUC scores:
 - \Rightarrow Single-lepton: 0.753
 - ⇒ Dilepton: 0.774

Analysis Overview | MVA Algorithms | Reconstruction Transformer

- Reconstruction transformer identifies jets originating from Higgs decay from kinematic event information
 - ⇒ Pairing score S_{ij} calculated via pairwise dot product of jet latent features, for each pair of jets i and j (à la <u>SPANET</u>)
- Makes full Higgs-boson 4-vector reconstruction possible
 - \Rightarrow Extract reconstructed Higgs p_T
- Improvements in Higgs reconstruction for STXS measurement
 - \Rightarrow More diagonal migration matrices
 - ⇒ Comparison shown in <u>backup slides</u>

Statistical Analysis | Brief overview

• Binned profile likelihood fit to all bins in analysis phase-space performed

More information on improved systematics model in <u>backups</u>

- Respective discriminant observables used as template variables
 - ⇒ Boosted regions use reconstructed Higgs pT as fitting variable
 - ⇒ Fits to data (in unblinded bins, under the background-only hypothesis)
 - 5 free-floating normalisation parameters for each $t\bar{t}$ + jets flavour component
 - ⇒ **Fits to Asimov dataset** (including blinded bins, under S+B hypothesis)
 - 6 (11) free-floating parameters in inclusive (stxs) fits, with 1 (6) POI(s)

Levi Evans | levi.samuel.evans@cern.ch

Statistical Analysis | Fit to the Asimov Dataset | Inclusive Measurement

- Increased precision w.r.t last measurement
- Inclusive measurement dominated by systematic uncertainty, but with clear reduction w.r.t prev. analysis
- Expected discovery significance
 - $\Rightarrow \qquad \qquad \mathcal{Z} = 5.5\sigma$
 - \Rightarrow Above boundary for discovery!

 $\circ~$ Up from $\mathcal{Z}=2.7\sigma$ for previous measurement

Statistical Analysis | Fit to the Asimov Dataset | Inclusive Ranking

Statistical Analysis | Fit to the Asimov Dataset | STXS Measurement

- Perform differential measurement w.r.t reconstructed Higgs pT, within STXS framework
- Further explore Higgs properties and better highlight deviations

- Improved reconstruction performance and statistics allows for split in lower STXS bins to fully align with STXS v1.2
- Statistically limited
- Improvements in expected sensitivity
 - ⇒ STXS 1/2: ~ 20%
 - ⇒ STXS 3: ~ 45%
 - ⇒ STXS 4: ~ 40%
 - ⇒ STXS 5: ~ 15%
 - ⇒ STXS 6: ~ 40%

Conclusions and closing remarks

- The $t\bar{t}H(H \rightarrow bb)$ full Run 2 re-analysis greatly improves on the previous measurement
 - ⇒ Improved tt + bb systematics model
 - ⇒ Improved MVA approach, benefitting from latest advances in machine-learning
 - ⇒ Split of background categories to better constrain various modelling aspects
- A more than two-fold increase in expected discovery significance
- Expected performance in STXS-based differential measurement improved
- Important contribution to Global Higgs combination measurements
- Updated result important verification of SM, or exciting hints of something beyond...

Thank you for your attention!

Levi Evans | levi.samuel.evans@cern.ch

Backup Slides | Single-lepton Channel | Background Composition

- Dominant background in signal regions is tt + ≥ 2b
- Other backgrounds large in high Higgs pT bins
 - ⇒ Boosted SR better discriminates against non-ttbar
- tt + light region very pure (> 50%)
- $tt + \ge 1c$ and $tt + \ge 2b$ good purity (~ 50%)
- tt + 1b and 1B regions slightly less pure
- Compositional changes between SR and CRs warrant sep. scale factors

Backup Slides | Single-lepton Channel | Signal Composition

- Resolved signal regions have signal purity of ~10%
- Boosted signal region has signal purity of ~18%
- Minimal signal contribution in control regions of analysis (< 2%)

Backup Slides | Dilepton Channel | Background Composition

- Dominant background in signal regions is tt + ≥ 2b
- Other backgrounds large in high Higgs pT bins
- tt + light region very pure (> 50%)
- $tt + \ge 1c$ very good purity (> 50%)
- tt + ≥ 2b, tt + 1b and tt + 1B regions
 slightly less pure
- Compositional changes between SR and CR warrant sep. scale factors

Backup Slides | Dilepton Channel | Signal Composition

- Dilepton signal regions have signal purity of ~16%
 - \Rightarrow Owing to better discrimination power
- Minimal signal contribution in control regions of analysis (< 2%)

Backup Slides | Transformer Input Features

Feature	Description	Feature Transformations
p_x	Object momentum in x-direction.	Re-scaled to $\mu = 0, \sigma = 1$.
p_{y}	Object momentum in y-direction.	Re-scaled to $\mu = 0, \sigma = 1$.
p_z	Object momentum in z-direction.	Re-scaled to $\mu = 0, \sigma = 1$.
energy	Object energy.	Re-scaled to $\mu = 0, \sigma = 1$.
$p_{\rm T}$	Object transverse momentum.	Re-scaled to $\mu = 0, \sigma = 1$.
mass	Object mass.	Re-scaled to $\mu = 0, \sigma = 1$.
η	Object pseudo-rapidity.	Re-scaled to $\mu = 0, \sigma = 1$.
φ	Object azimuthal angle.	Re-scaled to $\mu = 0, \sigma = 1$.
$\cos\phi$	Sine of object azimuthal angle.	Re-scaled to $\mu = 0, \sigma = 1$.
$\sin \phi$	Cosine of object azimuthal angle.	Re-scaled to $\mu = 0, \sigma = 1$.
PCBT bin	DL1r pseudo-continuous b-tagging bin assigned to jets in the following manner. Set to 0 for leptons and $E_{\rm T}^{\rm miss}$.	None.

	1,	if un-tagged		
	2,	if tagged at [85%, 77%)		
feature =	{3,	if tagged at [77%, 70%)		
	4,	if tagged at [70%, 60%)		
	5,	if tagged at 60%.		

lepton type	Lepton type of input objects. Set to 1 for electrons, 2 for muons,	None.
	and 0 for jets and $E_{\rm T}^{\rm miss}$.	
lepton charge	Charge of lepton objects in units of e . Set to 0 for jets and E_{T}^{miss} .	Re-scaled to $\mu = 0, \sigma = 1$.
$E_{\rm T}^{\rm miss}$ flag	Whether input object is $E_{\rm T}^{\rm miss}$ (value of 1) or not (value of 0).	None.

- Legacy transformers trained on low-level object features
 - \Rightarrow Object 4-vectors
 - \Rightarrow PCBT b-tagging scores
 - \Rightarrow Lepton type
 - \Rightarrow Lepton charge
 - ⇒ MET
- Full event information available for sequence processing!

Backup Slides | Transformer Training

Training hyper-parameters

	Classifica	tion	Reconstruction		
Parameter	Single Lepton	Dilepton	Single Lepton	Dileptor	
Max. number of jet objects	11	10	11	10	
Dropout Rate		0.	04		
Cross-attention pooling query regulariser	linear, 1×10^{-6}		n/a		
Pairing layer trainable tensor regulariser	n/a		linear, $1 \times$	10^{-6}	
Training batch size		20	48		
Validation batch size		20	48		
AdamW weight decay	5×10^{-5}	-6	$1 \times 10^{\circ}$	1×10^{-6}	
AdamW first moment decay rate	0.9				
AdamW second moment decay rate	0.999				
Label smoothing		0	.1		
Max. number of training epochs		30	00		
Early stopping min. loss decrease		()		
Early stopping patience		1	0		
Initial learning rate		1×10^{-8}			
Max. learning rate	3.5×10^{-5}				
Final learning rate	1×10^{-7}				
Learning rate burn-in duration		1	0		
Learning rate ramp-up duration		1	0		
Learning rate plateau duration		1	5		
Learning rate ramp-down duration		10	00		

Transformer hyper-parameters

	Descenter	Classifica	ation	Reconstruction	
	Parameter	Single Lepton	Dilepton	Single Lepton	Dilepton
1	number of latent features	256	256	128	128
	number of attention heads	4	4	8	8
embed	number of feature embedding layers	2	2	2	2
attblock	number of attention blocks	11	10	10	8
dense	number of linear layers per attention block	5	4	3	3

Training Samples

Process	Combined MC Statistics Single Lepton Dilepton		Samples
tīH	4 438 478	2 511 844	PowhegBox+Pythia8 PowhegBox+Herwig7
$t\bar{t} + \ge 2b$ $t\bar{t} + 1b$ $t\bar{t} + 1B$ $t\bar{t} + \ge 1c$ $t\bar{t} + \text{light}$	2 761 118 2 390 870 837 097 696 998 1 431 191	996 653 1 332 277 429 334 908 461 1 121 241	РоwнеgBox+Рутніа8 PowнegBox+Herwig7 PowhegBox+Рутніа8, p _T -hard=1 variation

Backup Slides | Higgs pT reconstruction migration matrices comparison

- Reconstruction transformer identifies jets originating from Higgs decay from kinematic event information
 - ⇒ Pairing score S_{ij} calculated via pairwise dot product of jet latent features for each pair of jets i and j (à la <u>SPANET</u>)
- Makes full Higgs-boson 4-vector reconstruction possible
 - \Rightarrow Extract reconstructed Higgs

Backup Slides | Nominal MC Samples

Process	Sample		
$t\bar{t}H$	Powheg + Pythia8		
$t\bar{t} + \text{light}, t\bar{t} + \geq 1c$	Powheg + Pythia8 $t\bar{t}$ @NLO 5FS		
$t\bar{t} + \ge 1b$	Powheg + Pythia8 $t\bar{t} + b\bar{b}$ @NLO 4FS		
tH , $tar{t}V$, $tar{t}tar{t}^*$	aMC@NLO + Pythia8		
V + jets, diboson	Sherpa		
Single top	Powheg + Pythia8 (dynamic scale for tW)		

Levi Evans | levi.samuel.evans@cern.ch

Backup Slides | $t\bar{t}$ + jets normalisation

- Owing to enlarged phase space and improved MVA techniques
 - \Rightarrow ability to separately constrain each $t\bar{t}$ background component
- Each flavour component normalisation estimated via binned profile likelihood fit (i.e via 5 free-parameters)
 - \Rightarrow tt + 1b: one additional particle jet matched to one b-hadron
 - \Rightarrow tt + \ge 2b: two or more additional particle jets
 - \Rightarrow tt + 1B: one additional particle jet matched to 2 or more b-hadrons

Channel	$t\bar{t} + X$ component	normalization factor value
	$t\bar{t} + c$	1.79
Single Lenton	$t\bar{t} + light$	0.74
Single Lepton	$t\bar{t} + 1b$	1.08
	$t\bar{t} + 1B$	1.08
	$t\bar{t} + \ge 2b$	0.96
-	$t\bar{t}+c$	1.59
Dilenton	$t\bar{t} + light$	0.85
Difepton	$t\bar{t} + 1b$	1.29
	$t\bar{t} + 1B$	1.29
	$t\bar{t} + \ge 2b$	0.93
	1	

- Data-driven scaling factors derived from a previous fit of background-only model to bins below blinding threshold
- Subsequent normalisation factors used in kinematic correction derivations, fake lepton estimation and discriminants
 - \Rightarrow Significant $t\bar{t} + \geq 1c$ correction can affect H_T^{all} distribution at low values of HT
- Scaling corrections also applied to all pre-fit distributions Levi Evans | levi.samuel.evans@cern.ch

Backup Slides | $t\bar{t}$ + jets systematics model

- All systematic samples normalised to the same nominal cross-sections in analysis phase-space
- Comparison of improved systematic model for $t\bar{t}$ + jets background

Uncertainty	Previous analysis	Legacy analysis	$t\bar{t}$ + jets components
ISR	Var3c (PS) and μ_R/μ_F (ME)	Var3c (PS)	All
FSR	μ_R FSR (PS)	μ_R FSR (PS)	All
ME scale	-	Independent μ_R/μ_F	All
NLO matching	aMC@NLO + Pythia8	PP8 4FS pthard = 1 4FS	$tar{t}+\geq 1b$
		PP8 4FS pthard = $1 5FS$	$t\bar{t} + ext{light}, t\bar{t} + \ge 1c$
PS & Hadronisation	Powheg + Herwig7 (PH7)	PH7 4FS	$tar{t}+\geq 1b$
		PH7 5FS	$t\bar{t} + \text{light}, t\bar{t} + \geq 1c$
Parton shower	-	PP8 4FS dipole recoil	$t\bar{t}+\geq 1b$