

Re-thinking the CMS Level-1 Trigger with Machine Learning

 ${\sf Maciej}\,{\sf Glowacki}\,{\sf on}\,{\sf behalf}\,{\sf of}\,{\sf the}\,{\sf CMS}\,{\sf experiment}$

April 2024 | Liverpool

LHC & CMS

Maciej Glowacki

Maciej Glowacki

Towards HL-LHC

- Produce 1 Higgs boson for every billion collisions
- To stress test the SM further, we need more collisions
- Only collected 5% of total LHC luminosity to date
- Saving all this data would not be useful
 - Demand for innovative online selection approaches

High Luminosity LHC

Current

78 vertices (average 60)

Phase 2

200 vertices (average 140)

More complex environment with 200 Pile-Up interactions Current approaches **not** sustainable (acceptance rate would 15x)

Run 4+5

Run 3

6

φ

HL-LHC CMS dataflow

Deploy ML algorithms already at Level 1

HL-LHC CMS Level 1 Trigger

- L1 HL-LHC Highlights
 - Larger L1 trigger rate / detector readout rate (100 kHz \rightarrow 750 kHz).
 - Larger L1 trigger latency (3.8 us → 12.5 us) → accommodate more sophisticated algorithms.
 - More info at L1 trigger \rightarrow L1 tracking information, higher granularity calorimetry
 - Full Particle Flow (PF) event reconstruction and PUPPI Pile-Up mitigation.

reconstruction and pile-up removal

Machine Learning at CMS Level 1 Trigger

ML R&D approaches at CTL2

Object Identification

Event Identification

Event-feature reconstruction

ΕΜ: e, γ, τ	
Event classification: topological classification from reconstructed particles (HH \rightarrow 4b benchmark)	(todav's focus)
	. , , ,
Reconstruction: Missing Transverse Energy (P _T ^{miss}) & Hadronic Transverse energy (HT) reconstruction from particle candidates.	

Displaced jets: heavy-flavour (b) & LLP tagging

$HH \rightarrow 4b$: HL-LHC flagship

 $\mathcal{L}_{scalar} = D_{\mu} \phi^{\dagger} D^{\mu} \phi - V(\phi^{\dagger} \phi)$ with $\phi = (\varphi^{\dagger} \phi^{0})^{T}$ doublet under SU(2) $V(\phi^{\dagger}\phi) = -\mu^2(\phi^{\dagger}\phi) + \lambda(\phi^{\dagger}\phi)^2$ $\phi(x) = \frac{1}{\sqrt{2}} \exp\left(i\sigma^i\xi(x)\right) \begin{pmatrix} 0\\ v+h(x) \end{pmatrix} \xrightarrow{EWSB} \phi(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ v+h(x) \end{pmatrix}$ Re Non-zero vacuum expectation value $v = \mu^2 / \lambda$ Mass of the weak bosons Mass of the fermions through $\mathcal{L}_{scalar} = D_{\mu}\phi^{\dagger}D^{\mu}\phi + \mu^{2}(\phi^{\dagger}\phi) - \lambda(\phi^{\dagger}\phi)^{2}$ Yukawa couplings $= \frac{v^2}{8} \left(g^2 W^i_{\mu} W^{i\mu} + g'^2 B_{\mu} B_{\nu} - 2g' g B_{\mu} W^{3\mu} \right) \left(1 + \frac{h}{v} \right)$ Fully parameterized by λ $+\frac{1}{2}\left(\partial_{\mu}h\partial^{\mu}h\right)-\lambda v^{2}h^{2}-\lambda vh^{3}-\frac{\lambda}{4}h^{4}-\frac{\lambda v^{4}}{4}$ Theory value given by v and m_u **Experimental measurement** kinetic term trilinear quartic mass \rightarrow Test of the SM coupling coupling term \rightarrow Probe the shape of the potential $m_H = \sqrt{2\lambda}v$ (on our menu today) → Very sensitive to BSM

 $\sigma(pp \to HH) \simeq \frac{\sigma(pp \to H)}{1000}$ If SM is correct : \rightarrow 4000 HH events during Run-2 ... not enough to see HH

B

 $Im(\phi)$

Dataflow

Topological trigger at Level 1

1. Calorimeter and track information used in PF reconstruction and PUPPI pile-up mitigation to deliver *PUPPI* candidates to CTL2 2. PUPPI candidate P_T binned in the η - ϕ space of the detector to produce 2-D *images* used concurrently by topological classifier and Jet Finding Algorithm. Preprocessing is applied to refine images to serve as input classifier.

3. Convolutional Neural Network (CNN) executes its inference procedure from input images. 4. CNN probability score delivered to GT to be used alongside existing menu bits.

Architecture

*Kernel regularisation $\infty \sum$ (weights_{kernel})²

Maciej Glowacki

Explainability

Making physics transparent is vital at the triggering stage

- Understand model decision making
- Condition on/regress classically derived quantities

r,	
1	
Physics	Physics
ML model	ML model

GradCam

- Pixel-wise Importance scores computed from backpropagated gradients of class scores w.r.t. final feature map activations.
- Gradients are then averaged, producing a weight for each feature map point that represents its importance in the classification decision.
- Visualises areas of high importance in the input on the final classification.

Physics Performance

- Grad-CAM scores indicate model is learning to cluster PUPPI candidates into jets.
 - Good agreement seen between highest Grad-CAM intensity and leading Level 1 reconstructed jet.
- ~10-15% gain in integrated and offline efficiencies compared to "QuadJetHT" trigger path at constant rate.

Machine Learning on the edge

Maciej Glowacki

•

Implementation on FPGA

Im2col algorithm used to increase parallelism on each clock cycle

Benefits from highly optimsied vector-wise operations

FPGA: Xiling xcvu9p-flga2577-2-e

Summary

- High-Luminosity LHC:
 - Ability to study increasingly rare phenomena (BSM will have less places to hide)!
 - Highly complex data taking environment (<PU> 200)
- Upgrade to the CMS level 1 trigger:
 - Tracking and high granularity calorimeter information
 - Particle Reconstruction & Pile-Up mitigation
 - Increased read-out rate and relaxed latency constraints
- Machine Learning approaches viable:
 - We have the tooling to translate ML models to firmware running on FPGA
 - Software-hardware co-design enables ML use at Level 1 with optimised algorithms meeting latency and resource constraints
 - ML outperforms classical methods
- Considerations:
 - Changing environments: i.e. tracker degradation (neccesiates continual training & deployment)

b-tagging

Missing-Transverse Energy

Phase II trigger menus

- Quad jet and HT requirements (reconstructed jets and summed)
- ~50-60% efficiency at ~10 kHz rate

	Offline	Online	Rate*	Additional	Objects			
L1 Trigger seeds	Threshold(s)	Threshold(s)	$\langle PU \rangle = 200$	Requirement(s)	plateau			
	at 90% or 95% (50%)	(Barrel)			efficiency			
	[GeV]	[kHz]	[kHz]	[cm, GeV]	[%]			
Single/Double/Triple Lepton (electron, muon) seeds								
Single TkMuon	22	20	12	$ \eta < 2.4$	95			
Double TkMuon	15,7	13,6	1	$ \eta < 2.4, \Delta z < 1$	95			
Triple TkMuon	5,3,3	4,2,2	16 $\eta < 2.4, \Delta z < 1$		95			
Single TkElectron	36	32	24	$ \eta < 2.4$	93			
Single TkIsoElectron	28	25	28	$ \eta < 2.4$	93			
TkIsoElectron-StaEG	22, 12	19,8	36	$ \eta < 2.4$	93, 99			
Double TkElectron	25, 12	22,10	4	$ \eta < 2.4, \Delta z < 1$	93			
Single StaEG	51	46	25	25 $ \eta < 2.4$				
Double StaEG	37,24	32,20	5	$ \eta < 2.4$	99			
Photon seeds								
Single TkIsoPhoton	36	33	43	$ \eta < 2.4$	97			
Double TkIsoPhoton	22, 12	19,9	50	$ \eta < 2.4$	97			
Taus seeds								
Single CaloTau	150(119)	109	21	$ \eta < 2.1$	99			
Double CaloTau	90,90(69,69)	65,65	25 $ \eta < 2.1, \Delta R > 0.5$		99			
Double PuppiTau	52,52(36,36)	36,36	7 $ \eta < 2.1, \Delta R > 0.5$		90			
Hadronic seeds (jets, H_T)								
Single PuppiJet	180	121	70	$ \eta < 2.4$	100			
Double PuppiJet	112,112	72,72	71	$\eta < 2.4, \Delta \eta < 1.6$	100			
$PuppiH_T$	450(377)	363	11	jets: $ \eta < 2.4, p_T > 30$	100			
$QuadPuppiJets-PuppiH_T$	70,55,40,40,400(328)	41,30,19,19,316	9	jets: $ \eta < 2.4, p_T > 30$	100,100			
				safety online cut $p_T > 25$ for jets				

Path	ſ	Inclusive acceptance	Loosely presel. evts. acceptance	YR presel. evts. acceptance
QuadJet_70_55_40_40	Γ	59%	85%	99%
QuadJet_70_55_40_40_HT320	Γ	50%	76%	91%
QuadJet_40_40_40_40_MuJet40	Г	23%	36%	44%
QuadJet_40_40_40_40_MuJet40_HT250	Г	22%	35%	43%
QuadJet_70_55_40_40_HT320 OR QuadJet_40_40_40_MuJet40_HT250	ļ	52%	79%	94%

Datasets (DAS)

MinBias:

/MinBias_TuneCP5_14TeV-pythia8/Phase2HLTTDRWinter20DIGI-PU200_110X_mcRun4_realistic_v3-v3/GEN-SIM-DIGI-RAW

 $HH \rightarrow bbbb$:

/GluGluToHHTo4B_node_SM_TuneCP5_14TeV-madgraph_pythia8/Phase2HLTTDRWinter20DIGI-PU200_110X_mcRun4_reali stic_v3-v5/GEN-SIM-DIGI-RAW