Searches for the Inert Doublet Model at CMS

Teddy Curtis^[1], Nicholas Wardle^[1], Anne-Marie Magnan^[1], Sasha Nikitenko^[2], Olga Kodolova^[2]

[1]: Imperial College London. [2]: Lomonosov Moscow State University

IMPERIAL

Theory and Motivation

Inert Doublet Model (IDM)

 Two Higgs Doublet Model with an unbroken discrete Z₂ symmetry

 $\phi_1 \to \phi_1, \quad \phi_2 \to -\phi_2, \quad SM \to SM$

- ϕ_1 acts as the normal SM Higgs doublet:
 - h₁₂₅
- ϕ_2 introduces 3 new particles:
 - H⁰ lightest particle
 - A⁰
 - H[±]
- 5 free parameters:

 $M_{H^0}, M_{A^0}, M_{H^\pm}, \lambda_2, \lambda_{345}$

 ${\ensuremath{\bigstar}}$ Constraint: $M_{H^0} < M_{A^0} < M_{H^\pm}$

Theory and Motivation

Inert Doublet Model (IDM)

 Two Higgs Doublet Model with an unbroken discrete Z₂ symmetry

 $\phi_1 \to \phi_1, \quad \phi_2 \to -\phi_2, \quad SM \to SM$

- ϕ_1 acts as the normal SM Higgs doublet:
 - h₁₂₅
- ϕ_2 introduces 3 new particles:
 - H⁰ lightest particle
 - A⁰
 - H[±]
- 5 free parameters:

 $M_{H^0}, M_{A^0}, M_{H^\pm}, \lambda_2, \lambda_{345}$

 ${\ensuremath{\bigstar}}$ Constraint: $M_{H^0} < M_{A^0} < M_{H^\pm}$

Z₂ symmetry results in:

- IDM particles couple only to gauge bosons
 → "inert"
- Pair production of inert scalars
- H is stable

H = Dark Matter candidate!

Final States

Electroweak Gauge Bosons + Missing Energy (E_{miss})

→ This is the first dedicated search for this model

Final State

Dilepton + Missing Energy

- $e^+e^-/\mu^+\mu^-$ provides clean signature
- ✤ H⁰ particles produced mainly back to back
 - Cancelling out of missing energy (E_{miss})
 - Reduced missing energy signature < 80 GeV
- Initial studies showed worse sensitivity in on-shell Z region
- Off-shell Z region generally less explored

Dilepton + Reduced E_{miss}, off-shell Z region

Final State

Dilepton + Missing Energy

- $e^+e^-/\mu^+\mu^-$ provides clean signature
- ✤ H⁰ particles produced mainly back to back
 - Cancelling out of missing energy (E_{miss})
 - Reduced missing energy signature < 80 GeV
- Initial studies showed worse sensitivity in on-shell Z region
- Off-shell Z region generally less explored

Dilepton + Reduced E_{miss}, off-shell Z region

Teddy Curtis

Parameter Scan

- Dominant process contains only SM couplings
 - $p p \rightarrow H^0 H^0 l^+ l^- \nu \nu$ has little discrimination versus

background and much smaller cross-section

- $M_{H\pm}$, λ_2 and λ_{345} have negligible effect on kinematics
- Only dependent on masses M_{H0} and M_{A0}
- Scan over: $M_{H_0} \in [70, 130]$ GeV,

 $\Delta(\mathsf{M}_{\mathsf{A0}},\mathsf{M}_{\mathsf{H0}}) = \mathsf{M}_{\mathsf{A0}} - \mathsf{M}_{\mathsf{H0}} \in [20,\,100] \; \text{GeV}$

Whilst maintaining M_{H0} < M_{A0}

Preselections

Preselections					
*	Require opposite sign, same flavour $e^+e^-/\mu^+\mu^-$	*	Require 0 hadronic taus		
*	Veto on any third lepton	*	≤ 1 jets		
*	Dilepton invariant mass \in (20, 80) GeV	*	0 b-tagged jets		

Background Modelling

Backgrounds

- Currently backgrounds modelled with simulation
- Main backgrounds:
 - $Z/\gamma \rightarrow ll$
 - WW $\rightarrow [[vv$
 - $TT \rightarrow l l vv$
 - $ZZ \rightarrow [l vv$

Corrections + Systematics

Included the following systematic uncertainties:

- Electron reconstruction & identification
- Muon reconstruction & Isolation & identification
- Jet identification & energy corrections

pNN Overview

Instead of individual networks trained for each mass point:

Single network that is optimal at all mass points *

Inputs:

- *
- Mass point (M_{H0}, M_{A0}) *

Event features (e.g. lepton P_T, η, ϕ) Example input feature $[P_T, \eta, \phi, M_{H0}, M_{A0}]$

Parameterized Machine Learning for High-Energy Physics [1601.07913]

pNN Overview

Instead of individual networks trained for each mass point:

Single network that is optimal at all mass points *

Inputs:

- Mass point (M_{H_0}, M_{Δ_0}) *

Event features (e.g. lepton P_T, η, ϕ) Example input feature $[P_T, \eta, \phi, M_{H0}, M_{A0}]$

Network learns optimal discrimination between signal and background for a given (M_{H0}, M_{A0})

For a given (M_{H0}, M_{A0}) , network applies optimal set of cuts to separate signal from * background

Parameterized Machine Learning for High-Energy Physics [1601.07913]

pNN Overview

Instead of individual networks trained for each mass point:

Single network that is optimal at all mass points *

Inputs:

- Mass point (M_{H_0}, M_{Δ_0})

Event features (e.g. lepton P_T, η, ϕ) Example input feature $[P_T, \eta, \phi, M_{H0}, M_{A0}]$

Network learns optimal discrimination between signal and background for a given ($M_{\mu 0}, M_{\Delta 0}$)

For a given (M_{H0}, M_{A0}) , network applies optimal set of cuts to separate signal from * background

Interpolation:

- Smooth network output allows for interpolation *between* simulated mass points
 - If trained on masses 100 & 110 GeV \rightarrow Network can also discriminate at 105 GeV •

Parameterized Machine Learning for High-Energy Physics [1601.07913]

Training

- Signal samples:
 - Train on all signal samples simultaneously
 - Use the masses that signal was simulated with
 - $(M_{H0}, M_{A0}) \in S_{MC} = \{(80, 100), (120, 150), (70, 90)...\}$
- Background samples:
 - These have no inherent IDM masses
 - Assign random masses from S_{MC}

Full training details shown in backup

Example batch: Signal = class 1 - Class: [1, 1, 1, 0, 0] - Masses: [(80, 100), (120, 150), (70, 90), (80, 100), (70, 90)]

Simulated masses

Randomly assigned

- Backgrounds:
 - Network output is smooth
 - To find background distribution at (M_{H0}, M_{A0}):
 - Evaluate simulation with mass inputs set to (M_{H0}, M_{A0})
- Signal:
 - To find signal distribution at (M_{H0}, M_{A0}) use cubic spline interpolation
- Previous studies shown interpolation performance comparable to single network performance

Teddy Curtis

12

Limit Setting

Expected Limits on M_{H0} and M_{A0}

- Limits found by fitting to pNN output
 - SR: pNN output > 0.95
 - Here, interpolated at every 1 GeV split
 - Previous uncertainties included in fit
- Set 95% CL upper limits on IDM masses M_{H0} and M_{A0}
- Need to simulate higher M_{H_0} signal
- Most sensitivity for mass splitting ~70 GeV
 - M_{H0} excluded up to ~120 GeV
- Limits get worse for smaller mass splittings
 - Leptons fall out of acceptance

Summary

- This is the first dedicated search for the IDM
- Searching in the Dilepton + E_{miss} final state, off-shell Z region
 - $M_{H_0} \in [70, 130] \text{ GeV}, \Delta(M_{A_0}, M_{H_0}) = M_{A_0} M_{H_0} \in [20, 100] \text{ GeV}$
- Parametric Neural Network to discriminate signal versus background
 - Single network for whole parameter space
- Fitting to pNN output

Summary

- This is the first dedicated search for the IDM
- Searching in the Dilepton + E_{miss} final state, off-shell Z region
 - $M_{H_0} \in [70, 130] \text{ GeV}, \Delta(M_{A_0}, M_{H_0}) = M_{A_0} M_{H_0} \in [20, 100] \text{ GeV}$
- Parametric Neural Network to discriminate signal versus background
 - Single network for whole parameter space
- Fitting to pNN output

Thanks!

Backups

Theory and Motivation

- λ_{345} is the coupling constant for IDM to the higg
- λ_2 is the quartic self coupling of the IDM particl

$V = -\frac{1}{2} \left[m_{11}^2 (\phi_S^{\dagger} \phi_S) + m_{22}^2 (\phi_D^{\dagger} \phi_D) \right] + \frac{\lambda_1}{2} (\phi_S^{\dagger} \phi_S)^2 + \frac{\lambda_2}{2} (\phi_D^{\dagger} \phi_D)^2$	
$+\lambda_3(\phi_S^{\dagger}\phi_S)(\phi_D^{\dagger}\phi_D)+\lambda_4(\phi_S^{\dagger}\phi_D)(\phi_D^{\dagger}\phi_S)+\frac{\lambda_5}{2}\left[(\phi_S^{\dagger}\phi_D)^2+(\phi_D^{\dagger}\phi_S)^2\right]$,

vertex	coupling
hHH	$\lambda_{345} v$
hAA	$\bar{\lambda}_{345} v$
hhh	$3\lambda_1 v$
$h H^+ H^-$	$\lambda_3 v$
hhhh	$3\lambda_1$
$H^+ H^+ H^- H^-$	$2 \lambda_2$
HHAA	λ_2
HHHH	$3 \lambda_2$
AAAA	$3 \lambda_2$
H^+H^-AA	λ_2
H^+H^-HH	λ_2
hhH^+H^-	λ_3
hhHH	λ_{345}
hhAA	$\bar{\lambda}_{345}$

vertex	coupling
$H^- H^+ \gamma$	ie
$H^- H^+ Z$	$i \frac{g}{2} \frac{\cos\left(2\theta_W\right)}{\cos\theta_W}$
$HH^{\pm}W^{\mp}$	$\mp i \frac{g}{2}$
$AH^{\mp}W^{\pm}$	$-\frac{g}{2}$
HAZ	$-\frac{g}{2\cos\theta_W}$

Preselection

Showing base object selections

All leptons used in this analysis need to pass these

Triggers HLT_Ele35_WPTight_Gsf HLT_IsoMu27

Teddy Curtis

Flags goodVertices globalSuperTightHalo2016Filter HBHENoiseFilter HBHENoiseIsoFilter EcalDeadCellTriggerPrimitiveFilter BadPFMuonFilter BadPFMuonDzFilter eeBadScFilter ecalBadCalibFilter

Object Preselections:

Electrons				Muons			
	Quantity Value		Quantity	Value			
	$P_T \ge 10 \text{ GeV}$			P_T	$\geq 10 \text{ GeV}$		
	$ \eta $		≤ 2.5		$ \eta $	≤ 2.4	
d_{xy}		$\leq 0.3~{ m cm}$		d_{xy}	$\leq 0.3 \text{ cm}$		
	d_z		$\leq 20 \text{ cm}$		d_z	$\leq 20 \text{ cm}$	
	Id mvaFall1		$ll17V2Iso_WPL$		Id	Lo	ose ID
Vet	Veto Transition		True		Isolation	pfIsoId	≥ 2 (Loose)
					ſ	T 100,000	
	Tana			Jets			
	Taus				Quar	ntity	Value
	Quantity		Value		P	P_T	
	P_T		$\geq 20 \text{ GeV}$		$ \eta $		≤ 2.4
	$ \eta $		≤ 2.3		Pile-up Id		Tight
	$\frac{d_z}{\Delta R \text{ Electrons}}$ $\frac{\Delta R \text{ Muons}}{\Delta R \text{ Muons}}$		$\leq 20 \text{ cm}$		ΔR Ele	ectrons	≥ 0.4
			≥ 0.4		$\Delta R N$	Iuons	≥ 0.4
			≥ 0.4		ΔR	Taus	≥ 0.4
	deep Lau V s Electron V V Loose			b-Jets			
	deep Lau V sMuon		VLOOSE		P) T	$\geq 20 \text{ GeV}$
	deeplauvsJets		v v LOOSe		1	7	≤ 2.4
					btagDeep	FlavB ID	Loose WP

Preselection

• Lead lepton PT is 2 GeV above the trigger threshold

Ι	Target Background	
Oppos		
Lead/Sublead P_T	29/10 (Muon), $37/10$ (Electron) GeV	WZ, VVV
Lead/Sublead ID	TightId	
Lead/Sublead Isolation	$Tight \ (pfIsoId \ge 4)$	
Dimuon Invariant Mass $20 \le M \le 80 \text{ GeV}$		DY, ZZ
Veto Lepton (e, μ) PT	$\geq 10 { m ~GeV}$	
Veto Lepton (e, μ) ID	$LooseId$ (Muons), Iso_WPL (Electron)	WZ, VVV
Veto Lepton (e, μ) Iso	Loose	
No. Taus	$= 0, P_T \ge 20 \text{ GeV}$	WZ
No. Jets	$\leq 1, P_T \geq 30 \text{ GeV}, \eta \leq 2.4$	DY, Top, VVV, ZZ
No. b Jets	$= 0, P_T \ge 20 \text{ GeV}, \eta \le 2.4$	Тор

Background Modelling

IMPERIAL

- Currently only modelled with MC
- Run II UL nanoAODv9 samples
- Cross-sections taken from latest, highest-order, theory predictions^[7]
- Correction factors:
 - All corrections taken from either nanoAOD or the jsonPOG-integration^[8]
 - L1 Pre-firing
 - Electron Reconstruction, ID, Trigger
 - Muon ID, Isolation and Trigger
 - PU weight SF

	Background MC			
Process	Process Samples			
Droll Von	DYJetsToLL_{0-4}J_M10-50 (LO)			
Dien-Tan	$DYJetsToLL_{0-4}J_M50$ (LO)			
	ZZTo2L2Nu			
77	$ZZTo2Q2L_mllmin4p0$			
	$ZZTo4L_{5f}$			
	ZZZ			
	WZTo3LNu			
WZ	WZTo2Q2L_mllmin4p0			
VV Z	WZTo1L3Nu_4f			
	WZZ			
	WWTo1L1Nu2Q_4f			
ww	WWTo2L2Nu			
** **	WWZ_4F			
	WWW_4F			
	TTTo2L2Nu			
TT	TTZToLLNuNu_M-10			
	TTWJetsToLNu			
tW	$ST_tW_(anti)top_5f$			
UVV	$ST_t-channel_(anti)top_5f$			
GluGlu	GluGluToContinToZZTo2L2L			

Initial Distributions

- Plots shown after initial object + dilepton selections
- Includes two IDM benchmark points:
 - mH = 80, mA = 120, mHch = 130
 - mH = 80, mA = 150, mHch = 160
- For 127fb⁻¹ of data, expect ~ 100-300 IDM events
- Clear that cut-based analysis is not possible

- Model is 4 linear layers with leaky ReLU and dropout=0.1
 - Parameterisation is done by concatenating input event features with the ma
 - E.g. [phi, mH, mA]
- Weighted Cross-Entropy
- Adam optimiser
- Trained for 10 epochs
- Learning rate = 1e-08
- Batch size = 500

MLPRelu((fc_process): ModuleList((0): Sequential((0): Dropout(p=0.1, inplace=False) (1): Linear(in_features=54, out_features=200, bias=True) (2): LeakyReLU(negative_slope=0.01) (1): Sequential((0): Dropout(p=0.1, inplace=False) (1): Linear(in_features=200, out_features=200, bias=True) (2): LeakyReLU(negative slope=0.01) (2): Sequential((0): Dropout(p=0.1, inplace=False) (1): Linear(in_features=200, out_features=200, bias=True) (2): LeakyReLU(negative_slope=0.01) (3): Sequential((0): Dropout(p=0.1, inplace=False) (1): Linear(in_features=200, out_features=50, bias=True) (2): LeakyReLU(negative_slope=0.01) (output_mlp_linear): Linear(in_features=50, out_features=1, bias=True) Number of parameters in model = 101501

Precuts
$P_T^{ll} > 15 \mathrm{GeV}$
$\Delta \phi_{ll,E_T^{miss}} > 1$
$M_T > 30$
$cos(\Delta\phi_{ll}) > -0.75$

Limit Setting

- Smaller mass splittings ($M_A M_H$) leads to softer leptons
 - These fall out of acceptance
 - Showing normalised count

- Mass splitting of 90 GeV still has good acceptance with the dilepton invariant mass out
 - This point still has off-shell Z

Teddy Curtis

CMS

- Searching for the Inert Doublet Model in the Dilepton + MET final state, off-shell Z region
 - $M_{H} \in [70, 130] \text{ GeV}, \Delta(M_{A}, M_{H}) = M_{A} M_{H} \in [20, 100] \text{ GeV}$
- Single Parametric Neural Network (pNN) optimises search at each mass point
- Limits found by fitting to pNN output

Thanks!

