

The UK Muon Physics Programme g-2, CLFV & μEDM

Saskia Charity, University of Liverpool IOP 2024, Liverpool 9th April 2024

09/04/2024

Muon Physics in the UK

- Charged Lepton Flavour Violation (CLFV)
 - Fermilab: Mu2e
 - JPARC: COMET
 - PSI: Mu3e, MEG-II
- The g-2 puzzle
 - Fermilab g-2 experiment
 - MUonE experiment at CERN
 - Theory effort

- Muon Electric Dipole Moment (µEDM)
 - Fermilab g-2 experiment
 - PSI µEDM Experiment

Imperial College

The Muon g-2 Puzzle

Muon g-2: Testing the Standard Model

- For a spin-1/2 particle: spin couples to external B-field → torque (precession)
- Magnetic moment determined by dimensionless quantity g
- Size of g determined by virtual loop interactions

Torque in B-field Magnetic Moment
$$\vec{\mu} imes \vec{B}$$
 $\vec{\mu} = g \frac{e}{2m} \vec{S}$

Measuring g-2

See parallel talks by Ce Zhang and Lorenzo Cotrozzi (Wednesday Session F)

09/04/2024

The University of Manchester

Status of the Fermilab g-2 experiment

- Run-2/3 data consistent with Run-1 and BNL
- Factor >2 in statistical and systematic uncertainty
- Surpassed TDR goals in statistics and systematics
- Another reduction by factor of 2 in statistical uncertainty from Run-4/5/6
- Expect final result in 2025

Phys. Rev. Lett 131.161802 (October 2023) Detailed Report: arXiv 2402.15410 (Feburary 2024)

- UK is a leading group in the experiment
- Analysis roles: magnetic field, beam dynamics, spin precession, muon EDM search
- Hardware: straw tracker and DAQ
- Simulation: beamline modelling

The g-2 puzzle: comparison with SM theory

Tensions between alternative theoretical values of aSM must be resolved

- 5 σ discrepancy between g-2 experiment a_u^{EXP} (2023) and Theory Initiative SM prediction (a_u^{SM}) from 2020. However:
 - Traditional SM prediction uses data-driven approach with e⁺e⁻ data •
 - Novel analytical calculation (lattice QCD) disagrees with data-driven calculation
 - Recent result from the CMD-3 detector disagrees with other experiments

Spacelike vs timelike

See poster by Giorgia Cacciola (Tuesday)

- Combine data from all hadronic channels
- Data from different experiments (KLOE, BaBAR, CMD3, ...)
- Resonances \rightarrow difficult to integrate

- Smooth integral (no resonances)
- One measurement for whole term

MUonE experiment design

High-precision tracking detectors required to measure small scattering angles

Detector design requirements

- Alignment: Relative position within a station must be stable at 10 μ m
- Material effects: control multiple scattering at 1% level \rightarrow minimise material
- Uniform efficiency over full energy range, as close to 100% as possible

between outgoing angles for

elastic events

MUonE status and UK contribution

See poster by Clement Devanne (Monday)

London

/ERPOOL

Muon EDM Experiments

Muon EDM current limits

 Charged particles might have an intrinsic electric dipole moment (EDM) analogous to magnetic dipole moment (MDM) → heavily suppressed in SM

$$H = -\vec{\mu} \cdot \vec{B} + \vec{d} \cdot \vec{E} \qquad \qquad \vec{\mu} = g \frac{e}{2m} \vec{S} \qquad \qquad \vec{d} = \eta \frac{Qe}{2mc} \vec{S}$$

$$MDM \qquad \qquad EDM$$

- SM d_{μ} out of experimental reach (10⁻³⁴ e.cm)
- $\vec{d} \cdot \vec{E}$ is CP-odd \rightarrow source of CP violation in leptons
- Current best limit set by BNL g-2 experiment: 1.9 x10⁻¹⁹ e.cm

$$\vec{\omega} = -\frac{q}{m} \left[a\vec{B} + \left(\frac{1}{1 - \gamma^2} - a \right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{2d_{\mu}mc}{q\hbar} \left(\frac{\vec{E}}{c} + \vec{\beta} \times \vec{B} \right) \right]$$

Muon EDM in the g-2 experiment

See parallel talk by Lucy Bailey (Wednesday Session F) See poster by Katie Ferraby (Tuesday)

- Tracking detectors (UK-built) \rightarrow crucial for analysis of vertical angle signal
- Improvements in tracking algorithms led by UK teams
- Run-1 sensitivity: ~BNL limit

09/04/2024

- Run-2/3 (3x statistics): d₁₁ ~6 x 10⁻²⁰ e.cm
- Target sensitivity (Runs 1-6): d_u ~1 x 10⁻²⁰ e.cm

MANCHESTER

The University of Manchester

muEDM at PSI

- New experiment using novel frozen spin technique: d_{μ} the only out-of-plane precession signal

MANCHESTER

The University of Manchester

- Stage 1
 - p_{μ} = 28 MeV/c ; B = 3T ; E = 0.3 MV/m
 - Demonstration of technique
 - Sensitivity: $d_{\mu} \sim 3 \times 10^{-21} \text{ e.cm}$
 - Completed prior to 2027 HIMB upgrade
- Stage 2
 - p_μ = 125 MeV/c; B = 3T; E=2.0 MV/m
 - Sensitivity: $d_{\mu} \sim 6 \times 10^{-23}$ e.cm
 - HV-MAPS positron tracker
 - ~early 2030s

UK contributions: DAQ, tracking, physics analysis and correction coils

Charged Lepton Flavour Violation

Charged Lepton Flavour Violation

- LFV observed in neutral sector \rightarrow neutrino oscillations
- Mixing between charged leptons never observed
- CLFV suppressed in SM \rightarrow Branching Ratio $\mathcal{O}10^{-54}$

	$\mu ightarrow e \gamma$	(MEG, MEG-II)
3 possible CLFV	$\mu \rightarrow eee$	(mu3e)
channels	$\mu N \rightarrow eN$	(COMET, mu2e)

- Ideal to search for rare CLFV decays in muon sector
 - clean decay modes (no SM background)
 - long lifetime
 - can be produced at high intensity

Observation of CLFV would be unambiguous sign of New Physics

Current and projected limits on CLFV in muons

	Best limits	Projected sensitivities (90% CL)
$\mu \to e \gamma$	< 3.1x10 ⁻¹³ MEG + MEG II (PSI)	4x10 ⁻¹⁴ MEG II (PSI)
$\mu \to eee$	< 1.0x10 ⁻¹² SINDRUM (PSI)	4x10 ⁻¹⁵ mu3e I (PSI) 1x10 ⁻¹⁶ mu3e II (PSI)
µN → eN	< 7.0x10 ⁻¹³ SINDRUM II (PSI) µAu → eAu	6x10 ⁻¹⁷ mu2e (FNAL) 7x10 ⁻¹⁵ COMET I (JPARC) 6x10 ⁻¹⁷ COMET II (JPARC)

 $\mu \rightarrow$ e sensitivity improved by four orders of magnitude in the next decade

$\mu N \rightarrow e N$

COMET and mu2e search for $\mu \rightarrow$ e conversion in the field of a nucleus

Long lifetime + pulsed beam \rightarrow reduce prompt backgrounds

•

COMET Experiment at JPARC

 $\mu N \rightarrow e N$

COMET News: Phase-a data

$\mu N \rightarrow eN$

- Data-taking phase in early 2023
 - First beam in the new proton beamline
 - UK leading involvement in planning, • operations and analysis
 - Analysis underway \rightarrow successful "dress rehearsal" ahead of Phase-I

COMET Phase-a: Beam

 $\mu N \rightarrow eN$

 $\mu N \rightarrow eN$

09/04/2024

$\mu N \rightarrow e N$

$\mu N \rightarrow e N$

Stopping target monitor (STM)

- STM determines the overall rate for normalisation (N_{captures})
- Count characteristic γ- and x-rays
- UK leads the Stopping Target Monitor (STM) detector group
- Org chart roles in operations and commissioning of STM
- STM at Fermilab → ready for integration with other detectors and main DAQ
- UK leading role in DAQ integration for full experiment
 - Successful DAQ "dry run" completed early 2024

Photos from Alex Keshavarzi

STM Data

 $\mu N \rightarrow eN$

The mu3e experiment at PSI

- Current limit from SINDRUM (1986): BR < 10⁻¹² (90% CL)
- DC proton beam produces pions on target
- Muons from pion decay \rightarrow MEG and mu3e
- Muons stopped on thin mylar target
- Decay electrons tracked in ultra low-mass tracker
- Excellent time and vertex resolution required

Sensitivity target

- Phase I: $10^8 \,\mu/s$, BR ($\mu \rightarrow eee$) < 2 x10⁻¹⁵
- Phase II: BR ($\mu \rightarrow eee$) < 10⁻¹⁶

- Thinner, smaller vertex detector \rightarrow improve pointing resolution
- Longer pixel detector modules
- Faster timing / greater bandwidth

Mu3e Status and Experiment Design

See poster by Charlie Kinsman (Tuesday)

09/04/2024

MEG-II at PSI: news and prospects

09/04/2024

Summary

Summary

- FNAL g-2 experiment completed data-taking in Summer 2023
 - Published Run-2/3 result in 2023 with 0.2 ppm uncertainty
 - Analysis ongoing with full run-4/5/6 dataset → target final result in 2025
 - Muon EDM analysis underway \rightarrow target sensitivity to d_µ with full statistics d_µ < 1 x10⁻²⁰ e.cm
- MUonE experiment at CERN
 - directly measure a_{μ}^{HLO} to 0.3%
 - Major UK involvement for hardware and analysis
- Progress being made towards dedicated muEDM experiment at PSI
 - Full experiment in 2030, target sensitivity d_{\mu} < 1x10^{-22} e.cm
- CLFV experiments target 4 orders of magnitude improvement on current limits
 - Tight constraints on wide range of NP models

Many exciting results to come over the next 10 years

Thank you

Lattice QCD

- Recent lattice QCD result also in tension with theory ٠ initiative value, agrees better with FNAL experiment
- Result being cross-checked in "intermediate window" by many groups
- Full calculation highly-anticipated

200

★ staggered

H Wilson

← twisted mass

H domain wall

205 $(a_\mu^{
m hvp})^{
m id,l}\cdot 10^{10}$

🔫 overlap

210

Data-driven determination of a_u^{SM}

Probing NP with CLFV

Mu3e at PSI

United Kingdom

- Bristol
- Liverpool
- Oxford
- UC London

Summary & Schedule

- Pre-production of Mu3e sub-detectors has started for most systems
- In 2024, we expected the inner vertex detector and the timing system to be completed or almost completed
- For end of 2024, we are studying the possibility of a first physics run at low rate without outer pixel layers at high magnetic field
- Optimistically, the Mu3e phase I detector will be completed in 2025 and ready for data taking

Design for Mu3e phase II at HIMB is starting now