# Neutrino Oscillation Experiments: Past/Present/Future

Luke Pickering IOP: Joint APP, HEPP and NP Conference The Spine, Liverpool

9th of April, 2024





#### **My Perspective (Bias)**



Neutrino Interactions WG



- Long Baseline Oscillations
- DUNE-PRISM

#### Focus more on: LBL with beam & DUNE vs. Hyper-K



Science and Technology Facilities Council

### This Talk

- Why Neutrinos Change Flavor
- Anatomy of an Oscillation Experiment
- Long Baseline: Current Generation
- Long Baseline: Next Generation
- Short Baseline Recent Results and Prospects



## **Why Neutrinos Change Flavor**



Science and Technology Facilities Council

Neutrino Oscillation Experiments: Past/Present/Future 9/4/24

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \underbrace{ \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{bmatrix}}_{\mathbf{M}_{\mathrm{PMNS}}} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$













#### **Re-parameterizing the PMNS**



- Unitarity lets us re-parameterize PMNS matrix in terms of:
  - Three mixing angles:  $C_{ij} = cos(\theta_{ij})$
  - CP violating phase:  $0 < \delta_{CP} < 2\pi$



#### **Re-parameterizing the PMNS**



- Unitarity lets us re-parameterize PMNS matrix in terms of:
  - Three mixing angles:  $C_{ij} = cos(\theta_{ij})$
  - CP violating phase:  $0 < \delta_{CP} < 2\pi$



Science and

Technology Facilities Council

#### **Oscillation Channels**





Latest Oscillation Results from T2K

L. Pickering 14

#### **Oscillation Channels**





Science and Technology Facilities Council

Latest Oscillation Results from T2K

L. Pickering 15

L. Pickering 16

#### **Muon Neutrino Disappearance**

Muon neutrino survival probability depends on **mixing angles**, and **mass-squared splittings**.





L. Pickering 17

#### **Muon Neutrino Disappearance**

Muon neutrino survival probability depends on **mixing angles**, and **mass-squared splittings**.





#### **Oscillation Channels**





Science and Technology Facilities Council

Latest Oscillation Results from T2K

L. Pickering 18

### **Electron Neutrino Appearance**

Appearance probability has 'CP odd' term.

 $\sim$ £11. I. 1 . .

• Sign flip between matter/antimatter  

$$P(\overrightarrow{\nu_{\mu}} \rightarrow \overleftarrow{\nu_{e}}) \simeq \sin^{2} \theta_{23} \sin^{2} 2\theta_{13} \sin^{2} \frac{\Delta m_{32}^{2} L}{4E}$$

$$(+) - \begin{bmatrix} \sin 2\theta_{12} \sin 2\theta_{23} \sin 2\theta_{13} \cos \theta_{13} \\ (+) - \begin{bmatrix} \sin 2\theta_{12} \sin 2\theta_{23} \sin 2\theta_{13} \cos \theta_{13} \\ \\ \times \sin \frac{\Delta m_{21}^{2} L}{4E} \sin^{2} \frac{\Delta m_{32}^{2} I}{4E} \end{bmatrix}$$

$$(-) = (CP-even, solar, matter effect terms)$$

$$0.100$$

$$0.075$$

$$0.000$$

$$0.075$$

$$0.000$$

$$0.025$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.100$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$



Science and Technology **Facilities** Council

Latest Oscillation Results from T2K

 $\delta_{CP} = 0$ 

 $\delta_{CP} = \pi/2$ 

 $----\delta_{CP} = \pi$ 

 $\delta_{CP} = 3\pi/2$ 

L. Pickering 19

Is there significant CP violation in the neutrino sector?



Science and Technology Facilities Council

What is the mass ordering of the neutrino mass states?

Is there significant CP violation in the neutrino sector?



Science and Technology Facilities Council

What is the mass ordering of the neutrino mass states?

Is there significant CP violation in the neutrino sector? What are the precise values of the neutrino oscillation parameters?



Science and Technology Facilities Council

What is the mass ordering of the neutrino mass states?

Is there significant CP violation in the neutrino sector? What are the precise values of the neutrino oscillation parameters?

Are standard 3-flavour PMNS oscillations able to explain observations?



Science and Technology Facilities Council

What is the mass ordering of the neutrino mass states?

Is there significant CP violation in the neutrino sector? What are the precise values of the neutrino oscillation parameters?

Enough to explain matter/antimatter asymmetry?

Are standard 3-flavour PMNS oscillations able to explain observations?



Science and Technology Facilities Council



Science and Technology Facilities Council

Neutrino Oscillation Experiments: Past/Present/Future 9/4/24





Neutrino Source  ${f \Phi}$ 

1. Find or make a source of neutrinos



Science and Technology Facilities Council



- 1. Find or make a source of neutrinos
- 2.
- 3. Predict the expected rate with a **flux/cross-section/detector** model
- 4. Look in your detector/box...





- 1. Find or make a source of neutrinos
- 2.
- 3. Predict the expected rate with a **flux/cross-section/detector** model
- 4. Look in your detector/box... See appearance/disappearance?





- 1. Find or make a source of neutrinos
- 2. Constrain model uncertainties before oscillation with *Near* Detector
- 3. Predict the expected rate with a **flux/cross-section/detector** model
- 4. Look in your detector/box... See appearance/disappearance?



## **Long Baseline: Current Generation**



Science and Technology Facilities Council

Neutrino Oscillation Experiments: Past/Present/Future 9/4/24

### **Energy and Baseline**

 $P(\nu_{\mu} \rightarrow \nu_{\mu}) \simeq 1 - 4 \cos^2 \theta_{13} \sin^2 \theta_{23}$ 

$$\times \left[1 - \cos^2 \theta_{13} \sin^2 \theta_{23}\right] \sin^2 \frac{\Delta m_{32}^2 L}{4E}$$

+ (solar, matter effect terms)

Muon neutrino disappearance Electron neutrino appearance





Science and Technology Facilities Council

#### **Energy and Baseline**



Science and Technology Facilities Council







K. ENGMAN/SCIENCE 345, 6204



Oscillation parameters: <u>NuFit 5.2</u> JHEP 2020, 178

Science and Technology Facilities Council

**RI** 

Neutrino Oscillation Experiments: Past/Present/Future

L/E = 500 km/GeV

9/4/24 L. Pickering 34









Fiducial mass:~22.5 kTMaterial:Ultrapure WaterDetection technique:CherenkovBaseline:295 kmPeak neutrino energy:0.6 GeVLocation:Mozumi Mine, Gifu, Japan



Fiducial Mass: Material: Detection technique: Baseline: Peak neutrino energy: Location:

14 kT Liquid scintillator Scintillation 810 km 1.9 GeV Ash River, MN





#### Far detector event displays



Both experiments analyse muon-like and electron-like events at near and far detectors



#### Z. Vallari FNAL JETP 2024/02/16


#### L. Pickering 37

### **Far Detector Samples**







# Uncertainties

#### Eur. Phys. J. C 83, 782 (2023)

| Sample |                | Uncertainty source (%) |             |              | Flux Interaction (%) | Total (%)   |
|--------|----------------|------------------------|-------------|--------------|----------------------|-------------|
|        |                | Flux                   | Interaction | FD + SI + PN |                      | 10tai (70)  |
| 1Rµ    | v              | 2.9 (5.0)              | 3.1 (11.7)  | 2.1 (2.7)    | 2.2 (12.7)           | 3.0 (13.0)  |
|        | $\overline{v}$ | 2.8 (4.7)              | 3.0 (10.8)  | 1.9 (2.3)    | 3.4 (11.8)           | 4.0 (12.0)  |
| 1Re    | v              | 2.8 (4.8)              | 3.2 (12.6)  | 3.1 (3.2)    | 3.6 (13.5)           | 4.7 (13.8)  |
|        | $\overline{v}$ | 2.9 (4.7)              | 3.1 (11.1)  | 3.9 (4.2)    | 4.3 (12.1)           | 5.9 (12.7)  |
| 1Re1de | v              | 2.8 (4.9)              | 4.2 (12.1)  | 13.4 (13.4)  | 5.0 (13.1)           | 14.3 (18.7) |



FD predicted event rate uncertainties







- Overlapping 1σ regions
- Disagree about best fit region for Normal Ordering









Science and Technology Facilities Council

ŘÌ

Neutrino Oscillation Experiments: Past/Present/Future 9/4/24 L. Pickering

40



#### Probe same L/E: ~500 km/GeV

- Measurements are statistically limited
- Different L and different E
- Potential to break degeneracies in both signal physics and with different dominant systematic uncertainties





0.7

0.6

0.5

0.4

Bayesian Cred. Int. With reactor constraint

#### Probe same L/E: ~500 km/GeV

- Measurements are statistically limited Ο
- Different L and different E Ο
- $sin^2\theta_{23}$ Potential to break degeneracies in both signal physics Ο and with different dominant systematic uncertainties

#### Joint fit (very) weakly prefers Inverted Mass Ordering!



#### L. Pickering 42

 $1\sigma$ 

**NO Conditional** 



# T2K + Super-K

- Inclusion of SK atmospheric data breaks mass ordering degeneracy
- T2K beam data sensitive to sin(δ<sub>CP</sub>)
- SK atmospheric data sensitive to cos(δ<sub>CP</sub>)





L. Pickering

43

Image credit: Super-K/ICRR

# T2K + Super-K



#### L. Berns IPNS Seminar



Science and Technology Facilities Council

### **IceCube**



Technology Facilities Council

## State of the v-tion



Long Baseline experiments largely sensitive to these parameters



Science and Technology Facilities Council

# T2K & NOvA

NOvA beam has been running stably at ~1 MW



# T2K & NOvA

NOvA beam has been running stably at ~1 MW

Total Accumulated POT for Physics
v-Mode Accumulated POT for Physics
v-Mode Accumulated POT for Physics
v-Mode Beam Power
v. Mode Beam Power







# T2K & NOvA

NOvA beam has been running stably at ~1 MW

Total Accumulated POT for Physics
v-Mode Accumulated POT for Physics
v-Mode Accumulated POT for Physics
v-Mode Beam Power
v-Mode Beam Power



10201 Run5 Run6 Run10 900 Run3 Run9 Run11 Run12 Run13 Run2 Run4 Run7 Runs 15 800 40 ve 700 35 Accumulated POT 600 d 30 eam 500 25 400 **m** 20300 15 0 20102011/20122013/20142015/20162017/20182019/20202021/20222023/20242025

J-PARC Neutrino beam stable at 750 kW design power for the first time on 25th of December 2023!



## **T2K Recent Upgrades**

- Near detector upgrade commissioning ongoing:
  - SEGD: New cube-based 3D scintillator tracker.

### Expect exciting updates from NOvA and T2K in June!





**NEUTRINO 2024** XXXI International Conference on Neutrino Physics and Astrophysics

Milano (Italy) - June 16-22, 2024

| · · · · · · · · · · · · · · · · · · · | Topics                                                   |  |
|---------------------------------------|----------------------------------------------------------|--|
| Neutrino oscillations                 | Supernova neutrinos                                      |  |
| Neutrino mass                         | Astrophysical neutrinos                                  |  |
| Neutrinoless Double Beta              | Geoneutrinos                                             |  |
| Decay                                 | Neutrino role in cosmology<br>Sterile neutrinos          |  |
| Neutrino interactions                 |                                                          |  |
| Accelerator neutrinos                 | Theory of neutrino masses and                            |  |
| Reactor neutrinos                     | mixing, Leptogenesis                                     |  |
| Atmospheric neutrinos                 | Beyond Standard Model<br>searches in the neutrino sector |  |
| Solar neutrinos                       |                                                          |  |
|                                       | New technologies for<br>neutrino physics                 |  |

Conference chairs: C. Brofferto (UniMiB, Italy) G. Ranucci (INFN, Italy)

SFG

International Advisory Committee

K H Abazajian (JC) USA) I Bartes (JFL USA), Nowden (LJNL USA), C Buck, (MrS, Germany), M Chen (GL, USA), Priend (REL, Japan), C Bartalio (USA), Germany J Gill Botella (CEHAT, Span), M C Gonzales-Garcia (SBU, USA), S Gowand (JFL Unida), J Harz (JGA, Cemany), N Jackowa (Usah: Bajuan), S K Kang (Sourillan, Souri Kons), J Kotla (JVL, Iniant), A Koucher (UFC), Filt (Jine), C Han, J Katarova (Jine), J Karona (Jine), J Karona (Jine), S King S Bohwingshahee, C Hank, S Mathematical (Jine), J Karona (Jine), J Karona B Schwingshahee, J (MrS, Garanya), S Saronali (JSC, Sarona), M B Sim (JCL, USA), I Tanabora (JRS, Gunna), C Tonel (JNFL, Isay), M Sascol (JCL, USA), V Matanabe (Tokka), Japan J H Wang, KS Tanaoy, M Wan, UGL, Gunnany)

#### International Neutrino Commission

J Adams UC, New Zealawi) S Bludman (MM), USA, T Bowles, IAMU, USA, S Bohler (FMA, USA), A Dart (TTI, Irane), Oracle (AT, Commy), F Feldman (M), USA), E Findrig (UM, USA), A Dartificit, Irane, D Carello, HT, Commy, F Feldman (M), USA), C Janteko (U, USA), V Kindsheeth (USA), Commany, T Kobayanh (VEX, Jupan), J C Learned (W, USA), M Kindsheeth (USA), Commany, T Kobayanh (VEX, Jupan), J C Learned (W, USA), M Kindsheeth (USA), Commany, T Kobayanh (VEX, Jupan), J C Learned (W, USA), M Linden (VFR), Europia (USA), V Kindsheeth (USA), Commany, T Nabayanh (VEX, Jupan), J Nabayan (VFR), Jupan), J Nabayan (UFR), J C Jupan), T Nabayan (WFR), J Lindano (WFR), Handon (WFR), Ha

#### Local Organising Committee

#### LOC Coordinators: E. Ferri (INFN, Italy), L. Miramonti (UniMi, Italy)

V Antonelli (NFN). D Basilico (UnM), M Berets (UnM), M Easson (INFN), M Borghesi (UnMA), B Asmas (UnMA), A Rojstti (NFN), B Caccinaiga (NFN), L Caccinaiga (NFN), S Capelli (UnMA), P Camit (UnMA), C Cattador (NFN), D Chess (UnMA), D Dhaqio (UnMA), B Calmon (UnMA), C Cattador (INFN), B Giammarchi (NFN), M Grina (UnMA), L Giano (UnMA), C Betti (INFN), M Mastall (UnMA), A Lane (UnMA), Intel (INFN), C Mastall, C Betti (UnMA), E Percail (UnMA), S Pezzi (NFN), S Ragazd (UnMA), A Re (UnMA), Ferrance (UnMA), B Tenz (UnMA), S Pezzi (NFN), S Ragazd (UnMA), A Re (UnMA), https://neutrino2024.org https://agenda.infn.it/event/37867 Organizing Secretariat: secretariat@neutrino2024.org Scientific Secretariat: scientific@neutrino2024.org



efficiency

# **Long Baseline: Next Generation**



Science and Technology Facilities Council

Neutrino Oscillation Experiments: Past/Present/Future 9/4/24

# Hyper-K



- Builds on successes of SK/T2K
  - **Bigger:** 8x larger fiducial mass than SK
  - **More intense:** beam power ~2x T2K
  - Same baseline: 295 km
  - Similar detector technology
- Data taking from ~2027

Science and

Technology Facilities Council



### **DUNE: Deep Underground Neutrino Experiment**



#### Expect Phase 1 beam data to arrive ~2031



Science and Technology Facilities Council

## **DUNE: Far Detectors**

- Four caverns with space for 17 kt LAr TPCs
  - Unprecedented detector resolution for an LBL far detector
- Phase 1: 2x LAr modules
- Rich prototype programme at CERN: ProtoDUNE









Science and Technology Facilities Council

# **DUNE: Long-term Sensitivity**

• Ultimate MO determination is unambiguous

EPJC 80 (2020) 978

- Not dependent on precision measurement of other oscillation parameters
- Requires no external oscillation parameter input





# **DUNE: Long-term Sensitivity**

• Ultimate MO determination is unambiguous

#### EPJC 80 (2020) 978

- Not dependent on precision measurement of other oscillation parameters
- Requires no external oscillation parameter input



• 7–16°  $\delta_{CP}$  resolution regardless of true value



# Short Baseline (brief) History, Recent Results, and Prospects



Science and Technology Facilities Council

Neutrino Oscillation Experiments: Past/Present/Future 9/4/24

# **Liquid Scintillator Neutrino Detector**

59

L. Pickering

In 90s, did not have a clear picture of three known neutrino mass-splittings:

LSND looked for oscillation at: L/E ~1 km/GeV



# **Liquid Scintillator Neutrino Detector**



L. Pickering

60

# LSND and MiniBooNE

- MiniBooNE commissioned to investigate LSND excess:
  - $\circ$  ~same L/E
  - Different L and E
  - Similar detector technology





Science and Technology Facilities Council

# LSND and MiniBooNE

- MiniBooNE commissioned to investigate LSND excess:
  - ~same L/E 0
  - Different L and E 0
  - Similar detector technology Ο





**Neutrino Oscillation Experiments: Past/Present/Future** L. Pickering 9/4/24 62

Excess over no oscillation prediction

# **3+1** Tensions

However, difficult to explain global short baseline anomalous observations with just a single additional  $\sim 1 \text{ ev}^2$  scale neutrino





Science and Technology Facilities Council

# **MiniBooNE & MicroBooNE**

MiniBooNE: Liquid scintillator + Cherenkov

- Commissioned to investigate MiniBooNE's observed excess
  - $\circ~$  In the same beam: ~same L and same E

Science and

Technology

**Facilities** Council

• Very different detector technology: LAr vs. LS+Cherenkov



**Neutrino Oscillation Experiments: Past/Present/Future** 





L. Pickering

64

9/4/24

# **MiniBooNE & MicroBooNE**

- Commissioned to investigate MiniBooNE's observed excess
  - $\circ~$  In the same beam: ~same L and same E
  - Very different detector technology: LAr vs. LS+Cherenkov
  - Most important: Can separate electrons from photons:
    - Energy deposit at the start of the shower



K. Duffy Rencontres de Vietnam22





Science and Technology Facilities Council





Science and Technology Facilities Council





Science and Technology Facilities Council

# **MicroBooNE: First LEE Search**



 MicroBooNE sees no evidence of MiniBooNE-like EM excess in channels sampled





# **MicroBooNE: First LEE Search**



- MicroBooNE sees no evidence of MiniBooNE-like EM excess in channels sampled
- But LSND, MiniBooNE, and others saw *something...*





## **MicroBooNE: First LEE Search**





Science and

Technology

**Facilities** Council

## **The Search Continues On SBN!**

Image credit: Diana Brandonisio, FNAL

#### **Short-Baseline Neutrino Program at Fermilab**





Science and Technology Facilities Council

- Near Detector to constrain unoscillated rate
- Look for appearance/disappearance in MicroBooNE and ICARUS data
- ICARUS taking data since 2021

Science and

Technology

**Facilities** Council



Ann.Rev.Nuc 69 p363-387 (2019)


- Near Detector to constrain unoscillated rate
- Look for appearance/disappearance in MicroBooNE and ICARUS data
- ICARUS taking data since 2021
- SBND is full of liquid argon
  - Commissioning phase beginning now!



Science and Technology Facilities Council

Neutrino Oscillation Experiments: Past/Present/Future 9/4/24 L. Pickering 73

# **Parting Comments**



Science and Technology Facilities Council

Neutrino Oscillation Experiments: Past/Present/Future 9/4/24

## **Things That I Didn't Mention**

- Future atmospheric neutrino experiments:
  - IceCube Gen-2, KM3NeT: ORCA and ARCA
- Current or future atmospheric programmes on LBL experiments that also have beams
- Reactor experiments and anomalies
- Extensive BSM programmes in addition ~1 ev<sup>2</sup> scale sterile neutrinos
- Neutrino beams
- Systematic uncertainty details:
  - Cross section uncertainties and constraint programmes
  - Neutrino flux predictions and uncertainties



## Summary

- Neutrino Oscillations are the only confirmed probe of BSM phenomenon:
  - Measured every parameter except  $\delta_{_{CP}}$ 
    - Constraints starting to look exciting for CPV!
  - **Current Gen:** More precise measurements until end of decade. Lots still to learn.
- Next Generation:
  - DUNE/HK will do precision physics and unambiguously measure fundamental symmetry parameters:
    - Mass ordering and  $\delta_{CP}$
- Short baseline:
  - Anomalies may motivate extra neutrinos
  - First multi-detector beam-based experiment entering
    - final commissioning as we speak!



Neutrino Oscillation Experiments: Past/Present/Future



9/4/24

L. Pickering

# **Backups**



#### **3+1** Tensions

 However, difficult to explain global data with a single additional ~1 ev<sup>2</sup> scale neutrino





Science and Technology Facilities Council

Neutrino Oscillation Experiments: Past/Present/Future 9/4/24 L. Pickering 78

10

 $10^{1}$ 

100

 $\Delta m_{41}^2/eV^2$ 

Phys. Rep. 884 (2020) 1-59

#### **Short Baseline Neutrino**

- Near Detector to constrain unoscillated rate
- Look for appearance/disappearance in MicroBooNE and ICARUS data
- ICARUS taking data since 2021
- SBND is filling/full of liquid argon
  - Commissioning phase beginning now!





Exciting time ahead for SBL oscillation searches and Ar-target neutrino physics:

 Important for next-gen Ar-target LBL!

Science and Technology Facilities Council

Neutrino Oscillation Experiments: Past/Present/Future 9/4/24 L. Pickering 79

# **Osc. Details**



# Events (Arbitrary Units) **Electron Neutrino Appearance**

Appearance probability has 'CP odd' term.

Technology

**Facilities** Council

Sign flip between matter and antimatter Ο



Latest Oscillation Results from T2K

L. Pickering 81

v<sub>e</sub>, T2K Best Fit, L=295 km

 $-\delta_{CP}=0$ 

 $\delta_{CP} = \pi/2$ 

 $\delta_{CP} = 3\pi/2$ 

 $\delta_{CP} = \pi$ 



Technology <u>Faci</u>lities Council Latest Oscillation Results from T2K

L. Pickering 82

#### rary Units) **Electron Neutrino Appearance**

- Appearance probability has 'CP odd' term.
  - Ο
- Dearance probability has '**CP odd**' term. Sign flip between matter and antimatter Matter-effect induces modest mass ordering Ο dependence



Science and Technology **Facilities Council** 

Latest Oscillation Results from T2K

L. Pickering 83

v<sub>e</sub>, T2K Best Fit, L=295 km

 $-\delta_{CP}=0$ 

 $\delta_{CP} = \pi/2$ 

 $\delta_{CP} = 3\pi/2$ 

 $\delta_{CP} = \pi$ 

#### rary Units) 5.1 **Electron Neutrino Appearance** (Arbit

- Appearance probability has 'CP odd' term.
  - Sign flip between matter and antimatter Ο
  - Events Matter-effect induces modest mass ordering Ο dependence





Science and Technology **Facilities Council** 

Latest Oscillation Results from T2K

L. Pickering 84

v<sub>e</sub>, T2K Best Fit, L=295 km

 $-\delta_{CP}=0$ 

 $\delta_{CP} = \pi/2$ 

 $\delta_{CP}=3\pi/2$ 

 $\delta_{CP} = \pi$ 

#### **Measuring An Oscillation**

$$N_{\text{near}}(E_{\text{obs}}) = \int dE_{\nu} \Phi_{\text{near}}(E_{\nu}) \cdot \sigma(E_{\nu}) \cdot \mathbf{D}_{\text{near}}$$

$$Want \text{ to know}$$

$$N_{\text{far}}(E_{\text{obs}}) = \int dE_{\nu} \Phi_{\text{far}}(E_{\nu}) \cdot P_{osc}(E_{\nu}) \cdot \sigma(E_{\nu}) \cdot \mathbf{D}_{\text{far}}$$

$$Observe$$
cillation measurements are **not** just near-to-far ratio:

Oscillation measurements are **not** just near-to-far ratio:

Oscillation is not a function of observed energy, E<sub>obs</sub> Ο

- Must use models to infer  $P_{osc}$  from observations
- Degeneracies inside the integral  $\rightarrow$  limits on sensitivity
  - Design Near Detector to minimise Flux and Cross Section degeneracy Ο
  - Limited by **Detector** capability Ο



**Neutrino Oscillation Experiments: Past/Present/Future** 9/4/24 L. Pickering

EREP

0.5

E(GeV)

85

0.2

0.1

#### L. Pickering 86

- Measuring oscillation is complicated by:
  - Oscillation depends on unknowable neutrino energy
  - Multiple interaction channels, rates only known to



#### L. Pickering 87

- Measuring oscillation is complicated by:
  - Oscillation depends on unknowable neutrino energy
  - Multiple interaction channels, rates only known to





- Measuring oscillation is complicated by:
  - Oscillation depends on unknowable neutrino energy
  - Multiple interaction channels, rates only known to ~10%
  - Reconstructing the neutrino energy from observed final state particles is highly model dependent





$$E_{\rm rec}^{\rm QE} = \frac{2M_{\rm N}E_{\ell} - M_{\ell}^2 + M_{\rm N'}^2 - M_{\rm N}^2}{2\left(M_{\rm N} - E_{\ell} + \left|\vec{p_{\ell}}\right|\cos\left(\theta_{\ell}\right)\right)}$$

#### L. Pickering 89

- Measuring oscillation is complicated by:
  - Oscillation depends on unknowable neutrino energy
  - Multiple interaction channels, rates only known to ~10%
  - Reconstructing the neutrino energy from observed final state particles is highly model dependent





#### **T2K+SK Octant**





• As a result, joint fit has no strong octant preference: P(upper) = 0.61

# **PRISM Details**



# **NOvA Details**



#### **Appearance: BiProb**

Z. Vallari FNAL JETP 2024/02/16











1. Sample near detector events





L. Pickering

 $\mathcal{N}O_{\mathcal{V}}\Lambda$ 

- 1. Sample near detector events
- 2. Estimate true neutrino energy spectrum with interaction model





- 1. Sample near detector events
- 2. Estimate true neutrino energy spectrum with interaction model



3. Account for far/near differences and oscillate true spectrum

L. Pickering



- 1. Sample near detector events
- 2. Estimate true neutrino energy spectrum with interaction model
- 3. Account for far/near differences and oscillate true spectrum
- 4. Predict observed oscillated spectrum and compare for goodness of fit.

 $\mathbf{N}O \mathbf{V} \mathbf{A}$ 

L. Pickering

# **DUNE Details**



#### **DUNE:** Exposure/time







#### **FD Event Samples**



Gev DUNE v. Appearance 160 Normal Ordering 0.25  $sin^2 2\theta_{13} = 0.088$ EPJC 80 (2020) 978  $\sin^2 \theta_{22} = 0.580$ 140 per 3.5 vears (staged) Events 120 Beam ( $v_e + \overline{v}_e$ ) CC NC (v<sub>µ</sub> + v̄<sub>µ</sub>) CC 100 (v. + v.) CC 80  $\cdots \delta_{CP} = -\pi/2$  $-\delta_{CP} = 0$ 60  $\cdots \delta_{CP} = +\pi/2$ 40 20 50 Events per 0.25 GeV DUNE v. Appearance Normal Ordering 45  $\sin^2 2\theta_{13} = 0.088$  $\sin^2 \theta_{23} = 0.580$ 40 3.5 years (staged) → Signal (v<sub>e</sub> + v<sub>e</sub>) CC 35 Beam (ve + ve) CC NC 30 (ν<sub>μ</sub> + ν<sub>μ</sub>) CC  $(v_{\tau} + \overline{v}_{\tau})$  CC 25  $\cdots \delta_{CP} = -\pi/2$ 20  $-\delta_{CP} = 0$  $- \delta_{CP} = +\pi/2$ 15 10

- 2019 Studies:
  - CC-Inclusive, mu- & e-like in nu and nubar mode
- Future:
  - Investigate impact of more granular event selection
     & projection Near and Far



Science and Technology Facilities Council

#### **Oscillation Sensitivities**

L. Pickering 100

**Reconstructed Energy (GeV)** 

#### **World-Leading Sensitivities**

Assume DUNE-PRISM has been used to minimize and account for significant deviations from interaction model predictions.





Science and Technology Facilities Council

**Oscillation Sensitivities** 



EPJC 80 (2020) 978

#### **Precision Measurements**

#### EPJC 80 (2020) 978



- Expected DUNE sensitivity v.s. current world-averages from NuFit 5.0
- Ultimate  $\theta_{13}$  sensitivity approaches reactor constraint
- Precision Osc. measurements, especially joint w/ HK & JUNO, will stress-test PMNS: Different energies/detectors/PMNS matrix elements!

**K**K

Science and Technology Facilities Council

**Oscillation Sensitivities** 

(JHEP 09 (2020) 178))

## CPV Sensitivity C. Marshall Wednesday Plenary





Science and Technology Facilities Council

**Oscillation Sensitivities** 

L. Pickering 103

#### **DUNE: Mass Ordering for Short Exposures**

- Strong MO sensitivity, even with short exposures [O(3-5 years)]
  - P < 0.01 to prefer wrong ratio



Science and Technology Facilities Council PRD 105

(2022)

## DUNE: $\delta_{CP}$ Resolution



К.

Neutrino Oscillation Experiments: Past/Present/Future 9/4/24 L. Pickering 105

# PRSM

#### **Precision Reaction-Independent Spectrum Measurement**



Science and Technology Facilities Council

Neutrino Oscillation Experiments: Past/Present/Future 9/4/24

## **Oscillation Measurements in a Nutshell**

- Existing LBL oscillation analyses:
  - Use models to 'unfold' near detector observations to a neutrino energy spectrum (implicit or explicit)
  - Apply oscillation hypothesis
  - Compare to far detector observations
- What happens if the model is wrong?
  - Predict oscillation features at the wrong place
  - Inflate errors  $\rightarrow$  degrade sensitivity
  - and/or bias measurements
- Current generation experiments are still largely statistically limited
  - $\circ$  The next generation hope not to be limited at the '5 $\sigma$ ' level
  - Need to actively design the experimental programme to minimize systematic uncertainty in flux and interaction models



107



Science and Technology Facilities Council

Neutrino Oscillation Experiments: Past/Present/Future 9/4/24 L. Pickering

#### **DUNE: Near Detectors**

- Constrain systematic uncertainties
  - Neutrino Beam
  - Neutrino-Ar interactions in few GeV region
- Monitor beam stability

Science and

Technology Facilities Council

• Function in high-rate environment

**SAND:** Beam monitoring and <sup>12</sup>C-target physics

**TMS:** Muon momentum and sign-selection

NDLAr: <sup>40</sup>Ar-target physics, unoscillated rate constraint, moveable 28.5m in/out of beam spot



108



Neutrino Oscillation Experiments: Past/Present/Future 9/4/24 L. Pickering
# **Off Axis Neutrino Beams**



Science and Technology Facilities Council

# **DUNE-PRISM and IWCD**

1) Over-constrain interaction model with on- and off-axis observations





Science and Technology Facilities Council

# **DUNE-PRISM and IWCD**

1) Over-constrain interaction model with on- and off-axis observations



Technology Facilities Council 2) Synthesise measurement of an oscillated
flux with the near detector
→ More direct extrapolation of near-detector

observations

**Neutrino Oscillation Experiments: Past/Present/Future** 

→ Reduce reliance on accuracy of interaction model predictions



9/4/24

L. Pickering

111



Science and Technology Facilities Council



.. Pickering NuFact23





Science and Technology Facilities Council







Technology Facilities Council



Science and Technology Facilities Council



Science and Technology Facilities Council



Technology Facilities Council

# **Complementary Approaches**



- Off axis measurements enable more-direct near-to-far extrapolation
  - Reduce dependence on signal interaction model for disappearance

Far detector prediction

**PRISM Linear Combination** 

**Near observations** 

ND/F

Ū

etector

Effects

Flux Mode

Oscillation Hypoth<u>esis</u>







Science and Technology Facilities Council

Neutrino Oscillation Experiments: Past/Present/Future 9/4

9/4/24 L. Pickering 123



Science and Technology Facilities Council

**Oscillation Programme Overview** 

L. Pickering 124

• Approximate function as a linear sum of sines and cosines





• Approximate function as a linear sum of sines and cosines



By Original by en:User:Glogger, vectorization by User:SidShakal. -Hand-traced in Inkscape, based on Image:Fourierop\_rows\_only.png., CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=3570075



• Approximate function as a linear sum of sines and cosines



By Original by en:User:Glogger, vectorization by User:SidShakal. -Hand-traced in Inkscape, based on Image:Fourierop\_rows\_only.png., CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=3570075



• Approximate function as a linear sum of sines and cosines



• Approximate function as a linear sum of sines and cosines



# **SBND PRISM**

#### A. Furmanski NuFact23

