

Neutrinoless Double-Beta Decay and

neutrino mass

Ruben Saakyan University College London

Joint IoP Annual HEPP, NP, APP Conference Liverpool 8-11 April 2024

Outline

- $0\nu\beta\beta$ Physics and Experimental Approaches
- Current results and (near)-future programme (UK flavour)
- International Landscape and UK strategy

Disclaimer:

- Vibrant field: impossible to do justice in 17 min
- Focus on giving an overview of most promising developments, convey excitement about physics reach^{*}, and present UK strategy

Much of material from comprehensive recent review

Agostini, Benato, Detwiler, Menendez, Vissani *Rev. Mod. Phys.* 95 025002

e

^{*} Potentially around the corner!

Big Questions requiring BSM Physics

Proton Decay: "Disappearance" of nucleons

 $B = N_{baryons} - N_{anti-baryons}$

Neutrinoless Double Beta Decay $(0\nu\beta\beta)$ "Creation" of leptonic matter

$$- = N_{leptons} - N_{anti-leptons}$$

L and B-L non-conservation

- Crucial for understanding *dominance of matter* over anti-matter
- Crucial for understanding mechanism behind *v-mass* (*Majorana* vs **Dirac**)
- $0\nu\beta\beta$ is the most sensitive way to address Lepton Number Violation *regardless* of underlying mechanism

$0\nu\beta\beta$: Generic test for (B-L)-violating new physics

- Any new L-violating physics can result in $0\nu\beta\beta$ (access to ultra-high energy BSM)
- Schechter-Valle: $0\nu\beta\beta$ observation provides unambiguous evidence for non-zero Majorana mass (even if it is not dominating mechanism)
 - J. Schechter and J. W. F. Valle Phys. Rev. D 25, 2951 (1982)

$0\nu\beta\beta$ Experimental Observables

$0\nu\beta\beta$: Neutrino Mass, Neutrino Oscillations and Nuclear Physics

$0\nu\beta\beta$: Majorana neutrino mass, $m_{\beta\beta}$ and neutrino mass ordering

 $m_{\beta\beta} \, [eV]$ Mass² m₃ **m**₂ 10^{-1} m $2.5 \times 10^{-3} \text{ eV}^2$ 10^{-2} m₂ m₁ $7.6 imes 10^{-5} \text{ eV}^2$ m₃ 10^{-3} Normal 0 Inverted 10^{-4} 10⁻⁴ 10^{-3} 10^{-2} 10^{-1} m_{light} [eV] $m_{\beta\beta} = \left| \sum_{i} U_{ei}^2 m_i \right|$

$0\nu\beta\beta$ with m_{$\beta\beta$} Status and Future Goals

Experimental Approaches

Detection Principles

It's all about *backgrounds*

- Cosmic rays (underground)
- Natural radioactivity (clean

materials, particle id and tagging)

• Standard Model $2\nu\beta\beta$ (energy

resolution)

UCL

Drawings courtesy of Laura Manenti

Enriched HPGe in LAr

UCL, Liverpool, Warwick, Lancaster, Daresbury (+6)

LEGEND-1000

Wednesday III, C: D. Waters

- 1000kg ⁷⁶Ge enriched > 90%
- $\begin{array}{ll} \bullet & {\rm BG \ goal:} < 0.025 \\ & {\rm cts/FWHM \ t \ yr}) \end{array}$
- Location LNGS

LEGEND-200

Wednesday III, C: G. Marshall

- 200kg $^{76}\mathrm{Ge}\ \mathrm{enriched} > 88\%$
- BG goal: < 0.5 cts/FWHM t yr)
- Physics run with 10 strings (142kg) since Mar-2023 at LNGS

Enriched HPGe in LAr

UCL, Liverpool, Warwick, Lancaster, Daresbury (+6)

LEGEND-1000

Wednesday III, C: D. Waters

- 1000kg 76 Ge enriched > 90%
- $\begin{array}{ll} \bullet & {\rm BG \ goal:} < 0.025 \\ & {\rm cts/FWHM \ t \ yr}) \end{array}$
- Location LNGS

LEGEND-200

Wednesday III, C: G. Marshall

- 200kg $^{76}\mathrm{Ge}\ \mathrm{enriched} > 88\%$
- BG goal: < 0.5 cts/FWHM t yr)

Loaded (Te) liquid scintillators

Courtesy of S. Biller

SuperNEMO Demonstrator: proof of concept for future tracking detectors

- $^{136}\rm{Xe}$ VUV scintillation light and ionization electron drift -> 3D reconstruction
- background decreasing with distance from surface
- R&D to tag $0\nu\beta\beta$ decay daughter isotope

Experiment	m_{tot}	$f_{ m enr.}$	Phase	Readout	
	[kg]	[%]			
EXO-200	161	81	liquid	LAPPDs + wires	
nEXO	5109	90	liquid	electrode tiles + SiPM s	
NEXT-100	97	90	gas	SiPMs + PMTs	
NEXT-HD	1100	90	gas	SiPMs + PMTs	
PandaX-III-200	200	90	gas	Micromegas	
PandaX-III-1K	1000	90	gas	Micromegas	
LZ-nat	7000	9	dual-phase	\mathbf{PMTs}	
LZ-enr	7000	90	dual-phase	\mathbf{PMTs}	
DARWIN	39 300	9	dual-phase	PMTs	
XLZD	80,000				

Enriched Xe TPCs

¹³⁶Xe $0\nu\beta\beta$ in **XLZD**

Liquid ¹³⁶Xe TPC

- 60 80 t of natural abundance xenon
 - $5.3 7.1 \text{ t of } {}^{136}\text{Xe}$ •
- Xenon self-shielding + MS rejection + vetoes
 - 11.1 18.3 t fiducial • volume

• $E_{Res} = 0.67\% \ (\sigma,$ demonstrated in LZ)

$2 \cdot 10^{2}$ 4.6-20 [rg] (30) [yr] sensitivity (30) [yr] $2 \cdot 10^{52}$ NEXT-BOLD * nEXO 7-30 [au XIZD - 80 9.3-40 🔁 (IZD - 60 discovery • NEXT-HD 14-60 ອີສ ຢູ່ 1 · 10² ■ KamLAND2-Zen T_{1/2}, 21-90 PandaX-III 4 · 10²⁶ 10 12 Exposure time [yr]

in summer 2024)

Towards 1t scale

Cryogenic Calorimeters

- thermal and scintillation signal
- particle ID and good energy resolution
- Leading results for ¹³⁰Te and ⁸²Se, future focus on ¹⁰⁰Mo

Experiment	Crystal	m_{tot}	f_{enr}
		[kg]	[%]
CUORE	$^{\rm nat}{ m TeO_2}$	742	34 ^a
CUPID-0	$\mathrm{Zn}^{\mathrm{enr}}\mathrm{Se}$	9.65	96
CUPID-Mo	${\rm Li_2}^{\rm enr}{ m MoO_4}$	4.16	97
CROSS	${\rm Li_2}^{\rm enr}{ m MoO_4}$	8.96	98
CUPID	${\rm Li_2}^{\rm enr}{ m MoO_4}$	472	≥ 95
AMoRE	${\rm Li_2}^{\rm enr}{ m MoO_4}$	200	96

Outlook

Last decade: GERDA, EXO-200, KamLAND-Zen-400, CUORE The two to watch: LEGEND-200, KamLAND-Zen-800 Coming up (10-15 yrs): LEGEND-1000, CUPID, nEXO, +...

Outlook

Scenario 1: signal just beyond current limits

- discovery within few years
- precise rate measurement with next-gen experiments ۲
- Access to underlying mechanism with SNEMO-like technique

Scenario 2: signal at bottom of I.O.

need R&D to measure decay features

Outlook

Scenario 3: signal < 10meV

interplay with oscillation experiments, cosmology and β -decay can lacksquarelead to breakthroughs even in absence of signal

International Landscape

MJD $m_{
m Beta}$ 99.73% discovery sensitivity [meV] 10² **GERDA-II** 10¹ 10³

Strong support and programme to realise >1 "ton-scale" experiment from both sides of the pond

UK Community Strategy

https://zenodo.org/records/10620723

Search records Q Communities My dashboard			
blished November 28, 2023 Version 1	Publication 🔒 Open		
eutrinoless double-beta decay: UK community strategy			
K Neutrinoless Double-Beta Decay Community 24			
iles UK NDBD strategy.pdf	~		
P 1 of 3 - + Automatic Zoom+	21 🖨 🖻 🚿		
Neutrinoless double-beta decay: UK commun	ty strategy		
 M. Agostini^{*1}, H. Araujo², S. Biller³, M. Borri⁴, A. Boston⁵, H. Boston⁵, S. Burdin⁵, A. Cottle¹, F. Deppisch¹, P. Di Bari⁶, J. Dobaczewski⁷, J. Dobson⁸, J. Evans⁹, L. Falk¹⁰, H. Flaecher¹¹, H. Fox¹², C. Ghag¹, R. Guenette⁹, L. Harkness-Brennan⁵, J. Hartnell¹⁰, RD. Herzberg⁵, R. Jones¹², S. Jones¹³, D. Judson⁵, A. Khan¹⁴, S. King⁶, M. Kogimtzis⁴, L. Kormos¹², H. Kraus³, P. Kyberd¹⁴, M. Labiche⁴, I. Lazarus⁴, J. March-Russell³, I. Martinez Soler¹⁵, C. McCabe⁸, N. McCauley⁵, A. Mehta⁵, D. Muenstermann¹², S. Paling¹⁶, K. Palladino³, S. Paschalis⁷, C. Patrick¹⁷, S.J.M. Peeters¹⁰, M. Petri⁷, Y. Ramachers¹⁸, T. Rawlings⁴, A. Reichold³, J. Rose⁵, R. Saakyan¹, P. Scovell¹⁶, S. Shaw¹⁷, R. Smith⁴, S. Soldner-Rembold⁹, T. Sumner², D. Tovey¹³, J. Tseng³, J. Turner¹⁵, Y. Uchida², C. Unsworth⁴, D. Waters¹, S. West¹⁹, J. Wilson⁸, and I. Zaval²⁰ 			
 ¹ University College London, ² Imperial College London, ³ Oxford University, ⁴ UKRI ⁵ University of Liverpool, ⁶ University of Southampton, ⁷ University of York, ⁸ ⁹ University of Manchester, ¹⁰ University of Sussex, ¹¹ Bristol University, ¹² ¹³ University of Sheffield, ¹⁴ Brunel University London, ¹⁵ Durham ¹⁶ UKRI STFC Boulby Underground Laboratory, ¹⁷ University of Edinburgh, ¹⁸ ¹⁹ Royal Holloway, University of London, ²⁰ Swansea University 	STFC Daresbury Laboratory, King's College London, ancaster University, University, University of Warwick, sity		

near-term: 5 yr mid-term: 5 - 15 yr long-term > 15 yr

- 1) Continued support for running experiments^{*} exploitation
- 2) Support for construction of LEGEND-1000
 in the near-term aiming at 3σ I.O.
 discovery sensitivity in mid-term
- 3) Support the development and
 implementation of higher-loading phased of
 SNO+ to address *long-term* goals
- 4) Support complementary opportunities of XLZD and future blue-skies R&D in *longterm*

Support from particle, astro-particle and nuclear physics communities

* LEGEND-200, SNO+, SuperNEMO

Concluding Remarks

- $0\nu\beta\beta$ is the best way to probe Lepton Number Violation and its connection to preponderance of matter and neutrino mass generation mechanism
- Huge progress over past decade has led to a **coordinated international effort**
 - Phased approach, convergence on experiments fully covering I.O. sensitivity
 - Continuing R&D to tackle N.O. and detailed exploration of signal
 - Strong effort in NME modelling, ab initio calculations, experimental input
- Interplay with oscillations, cosmology and β -decay results yields a significant likelihood of discovery in next 2-15 years!
- **UK** is in enviable leadership position but needs to "stick to the plan".

Additional Material

Different ways of measuring absolute neutrino mass

$0\nu\beta\beta$: Generic test for L-violating BSM physics

 $< m_v >$

V+A

SuperNEMO Collaboration EPJ C (2010) 70, pp. 972-943.

Synergies with LHC searches

Deppisch, Graf, Iachello and Kotila Phys.Rev.D 102 (2020) 9, 095016

9-Apr-24

U d

đ

R. Saakyan loP2024. 0vBB

Rev. Mod. Phys. 95 025002

