ALICE and heavy-ion program at CERN

Marco van Leeuwen, Nikhef and CERN

IoP joint APP, HEPP, and NP conference 8-12 April 2024, Liverpool

The Large Hadron Collider

CMS

ALICE

ALICE: dedicated heavy-ion experiment ATLAS, CMS: general purpose pp detectors LHCb: forward detector, optimised for flavour physics

pp collisions $\sqrt{s} = 7, 8, 13, 13.6 \text{ TeV}$

ALICE and the Heavy-Ion program at CERN | IoP joint meeting, Liverpool | Marco van Leeuwen

Pb-Pb collisions: $\sqrt{s_{NN}} = 2.76, 5.02, 5.36$ TeV

ATLAS

other systems: p-Pb, Xe-Xe, O-O, p-O

Condensed matter of QCD: the quark-gluon plasma

quarks and gluons confined in hadrons

ALICE and the Heavy-Ion program at CERN | IoP joint meeting, Liverpool | Marco van Leeuwen

Lattice QCD calculations: energy density vs temperature

Phase transition at critical temperature $T_{c} \approx 155 \text{ MeV} \approx 10^{12} \text{ K}$ Increase of number of degrees of freedom: hadrons (3 pions) \rightarrow quarks+gluons (37)

Heavy ion collisions: Little Bangs

Stages of the collision: initial stages — QGP/fluid stage — hadron formation (freeze out)

'Little Bang': recreate primordial matter in the laboratory

Gauging the temperature: melting of quarkonia **Di-muon mass spectrum: pp Di-muon mass spectrum: Pb-Pb** <u>×10³</u> PbPb 1.61 nb⁻¹ (5.02 TeV) pp 300 pb⁻¹ (5.02 TeV) <u>×1</u>0³ 200 $p_{_{ m T}}$ < 30 GeV/c10 **−CMS** Data CMS Temperature T<Td **Temperature T>Td** |*y*| < 2.4 — Total fit **180** [-Supplementary Centrality 0-90% Signal Events / (75 MeV/c²) Events / (75 MeV/c²) 160⊢ $p_{_{ m T}}$ < 30 GeV/c---- Background 8 ×10³ |*y*| < 2.4 nts / (50 MeV/*c*²) 140⊦ • Data 2.2 🎢 120⊱ — Total fit 6 ---- Signal 100⊢ .8 Binding force screened when --- Background 80 $r > \lambda_d$ 10.2 10.4 10.6 *m_{µµ}* (GeV/*c*²) 10 **60**∃ 2 40 20 screened at higher temperature, density 08 12 13 9 10 12 13 10 9 11 14 $m_{\mu\mu}$ (GeV/ c^2) $m_{\mu\mu}$ (GeV/ c^2)

Binding of quarkonia (bb, $c\overline{c}$ bound states)

Higher states suppressed in Pb-Pb collisions

CMS, <u>arXiv:2303.17026</u> ATLAS, <u>PRC 107, 054912</u>

TAMU: Du, He, Rapp, PRC 96, 054901

Quarkonia: nuclear modification factor

Nuclear modification factor

 $R_{AA} = \frac{dN/dp_T|_{AA}}{\langle N_{coll} \rangle dN/dp_T|_{pp}}$

 $R_{AA} = 1$: no effect $R_{AA} = 0$: complete suppression

Large suppression — dissociation in central events Larger effect for higher states — weaker binding

shows smaller suppression

Early stage temperature: melting of charmonia (J/ψ)

ALICE and the Heavy-Ion program at CERN | IoP joint meeting, Liverpool | Marco van Leeuwen

In agreement with coalescence expectation: larger $c\overline{c}$ density at mid-rapidity

Azimuthal anisotropy: initial and final states

Simulated event: location of nucleons

Initial state spatial anisotropies ε_n are transferred into final state momentum anisotropies v_n
 by pressure gradients, flow of the Quark Gluon Plasma

Anisotropic flow: initial state and QGP expansion

Mass-dependence of v₂ measures flow velocity

Constraining initial state and plasma properties simultaneously: Bayesian inference

Experimental input: yields, mean p_T and harmonic flow vs p_T

Model: initial anisotropies + medium response

ALICE and the Heavy-Ion program at CERN | IoP joint meeting, Liverpool | Marco van Leeuwen

J. E. Bernhard et al, arXiv: 1605.03954

Flow cumulants $v_n \{2\}$ Mean p_T [GeV] 0.09 $\bullet v_2$ $par{p}$ $\blacktriangleleft K^{\pm} \stackrel{0.06}{\leftarrow}$ • π^{\pm} 0.03 $\bullet v_3$ $\bullet v_4$ 0.09 $\bullet v_2$ $p\bar{p}$ 0.06 K^{\pm} \pm 0.03 v_{A} - 0.00<u></u> 5070304060 5060 702030 40 10 Centrality % Centrality %

Explores a large parameter space to investigate reliability/robustness of the modeling

14

A global fit to anisotropic flow: main result

QGP has a very small 'specific viscosity' \Rightarrow small mean free path

Viscosity close to fundamental lower bound

ALICE and the Heavy-Ion program at CERN | IoP joint meeting, Liverpool | Marco van Leeuwen

J. E. Bernhard et al, <u>Nature</u> <u>Physics</u> 15, 1113–1117, arXiv: 1605.03954

Comparison to well-known liquids

osity' \Rightarrow small mean free path $\eta = \frac{1}{3} n \overline{p} \lambda$

Exploring initial state geometry: event plane correlations

In line with expectations from initial state geometry

Messengers of the Plasma: soft and hard processes

Soft processes

Momenta comparable to QGP temperature $p_T \lesssim 3 \text{GeV}/c$ Near thermal equilibrium with the plasma

'particles from the QGP'

Hard processes: large momenta >> *T*_{QGP}

- Short life time: expect only partial equilibration

Short formation time: initial production independent of QGP formation

• Start out far out of thermal equilibrium: approach equilibrium through interactions

'Hard probes' of interactions with the QGP

Nuclear modification of p_T spectra

Charged particle p_T spectra

ALICE and the Heavy-Ion program at CERN | IoP joint meeting, Liverpool | Marco van Leeuwen

ALICE, PLB720, 52 CMS, EPJC, 72, 1945 ATLAS, arXiv:1504.04337

Pb+Pb: clear suppression ($R_{AA} < 1$): parton energy loss

Azimuthal anisotropy: two mechanisms

Hydrodynamical expansion

Conversion of pressure gradients into momentum space anisotropy

Equilibrium processes: soft particle production and low-p_T heavy flavour

ALICE and the Heavy-Ion program at CERN | IoP joint meeting, Liverpool | Marco van Leeuwen

Parton energy loss

Anisotropy due to energy loss and path length differences

More energy loss along long axis than short axis

 $\Delta E_{med} \sim \alpha_S \hat{q} L^2$

Out-of-equilibrium: high-p_T processes

Nuclear modification and elliptic flow of D mesons

charm quarks, m >> T are produced in an initial hard scattering

Heavy flavor transport coefficient: Bayesian fit

Elliptic flow of charm beauty quarks: effect of mass

Quarkonia: flow generated by quark flow and coalescence Charmonia: large elliptic flow — Bottomonia: compatible with no flow

ALICE and the Heavy-Ion program at CERN | IoP joint meeting, Liverpool | Marco van Leeuwen

Non-prompt D mesons (open beauty) show smaller v₂

Beauty quarks flow less than charm quarks: larger mass, slower thermalisation Open and hidden flavor allow to investigate impact of hadronisation, light quark flow

Energy loss: di-jet asymmetry

ALICE upgrades for Run 3 and 4

New ITS and MFT

Impact parameter resolution

TPC: GEM readout

Online event processing

+ readout upgrades for muon system, TRD, EMCal

ALICE LS2 upgrade paper: <u>arXiv:2302.01238</u>

ALICE and the Heavy-Ion program at CERN | IoP joint meeting, Liverpool | Marco van Leeuwen

Fast Interaction Trigger

Improved pointing resolution and readout rate: record 50 kHz Pb-Pb collisions (50x more minimum bias events)

Normalised

ITS 3 and FoCal for Run 4

ITS 3: ultra-light, fully cylindrical tracking layers

Lol: <u>CERN-LHCC-2019-018</u> DPTS test paper arXiv:2212.08621

Improved performance for

- Heavy flavour reconstruction
- Di-lepton measurements

ALICE and the Heavy-Ion program at CERN | IoP joint meeting, Liverpool | Marco van Leeuwen

FoCal: high-granularity foward calorimeter

High-granularity Si-W EM calorimeter for photons and π^0

- Small-x physics in pp and p-Pb
- Forward π^0 in Pb-Pb -

TDRs approved, installation in LS3: 2026-2028

LHC program time line

- ATLAS and CMS Phase II upgrades:
- New trackers: HI tracking up to $\eta = 4$
- Timing layers: PID
- New ZDCs
- ...

ALICE 3:

CERN-LHCC-2022-009

- Excellent pointing resolution
- Large η coverage
- Excellent PID: TOF, RICH, muons, EMCal

LHCb: Phase IIb upgrades

Dielectrons: chiral symmetry and thermal emission

Run 3 and 4: first measurements of thermal dilepton emission at LHC \rightarrow first access to average T

High precision: access $\rho - a_1$ mixing

Excellent precision for dilepton v_2 vs $p_{\rm T}$ in different mass ranges \rightarrow time evolution of temperature

Summary

- LHC heavy-ion program: multi-body QCD and the properties of strongly interacting matter at high T
- Dissociation ('melting') of quarkonia: very high density and T
- Determine properties of QGP: viscosity and transport coefficients
 - Viscosity very small: close to lower limit $\eta/s = 1/4\pi$
 - Longer thermalization time for beauty than charm
- First measurements of thermal radiation expected with upgraded detector in Run 3 + 4
 - ALICE 3: next-generation upgrade for run 5 and 6

ALICE, arXiv:2211.04384

Thank you for your attention

Heavy Ion Physics: thermal radiation from the early stages

Emission of thermal radiation

ALICE and the Heavy-Ion program at CERN | IoP joint meeting, Liverpool | Marco van Leeuwen

Final state: hadron scattering

---->

Baryon to meson ratio: beauty sector (non-prompt charm)

Baryon production larger in pp than e⁺e⁻ $\Lambda_c, \Xi_c, \Sigma_c$ measured

Prompt and non-prompt Λ_c/D

arXiv:2308.04873

Baryon enhancement also present in beauty sector In line with expectation from color-reconnection models

Azimuthal anisotropy: initial and final state

Schenke and Jeon, Phys.Rev.Lett.106:042301

Low viscosity

Bayesian analysis of flow: results

Flow data provide information on initial geometry and viscosity of the QGP at the same time

ALICE and the Heavy-Ion program at CERN | IoP joint meeting, Liverpool | Marco van Leeuwen

Viscosity vs *T*

Π Bernhard et al, arXiv: 1605.03954

Heavy-ion collisions as a laboratory for nuclear and hadron physics

Example: life time of strange baryons and nuclei

ALICE and the Heavy-Ion program at CERN | IoP joint meeting, Liverpool | Marco van Leeuwen

Hypernuclei life time

Measuring hadron interaction potentials via femtoscopic correlations

$$C(k^*) = \frac{N_{\text{same}}(k^*)}{N_{\text{mixed}}(k^*)}$$

$$\vec{k} = \vec{k_1 - k_2}$$
With

\Rightarrow Connections to hadron and nuclear physics

ALICE and the Heavy-Ion program at CERN | IoP joint meeting, Liverpool | Marco van Leeuwen

Known from Bose-Einstein correlations of identical bosons Hanbury-Brown Twiss interferometry

Correlation function depends on source distribution and interaction potential:

$$C(k*) = \int S(r) |\Psi(k^*, r)|^2 d^3 r$$

known source distribution (e.g. from pion or proton pairs) determine interaction potential

Gives access hadron interaction potentials of unstable hadrons

Correlation measurements of strong 2-body interactions

ALICE and the Heavy-Ion program at CERN | IoP joint meeting, Liverpool | Marco van Leeuwen

Large number of channels being explored, baryon-baryon and baryon-meson, including charm mesons Close contact with theory community to provide feedback on models and lattice calculations

Strong interaction potentials: 3-body interactions

Need full three-body calculation to explain measurement

ALICE and the Heavy-Ion program at CERN | IoP joint meeting, Liverpool | Marco van Leeuwen

No significant effect of three-body interactions

More to come with run-3 event selection: input for 3-body effects in hadron/nuclear physics

Back to the earliest stages: direct photon production

Large background: decay photons from π^0 , η , ... \Rightarrow Challenging measurement

Main sources:

- High p_T: hard scattering; quark-gluon Compton process
- Low p_T: thermal radiation

Excess at low p_T: thermal photons

Direct photon excess: thermal production

Direct photon excess spectrum

Thermal emission visible for mid-central and central events

ALICE and the Heavy-Ion program at CERN | IoP joint meeting, Liverpool | Marco van Leeuwen

Spectral slope: apparent temperature

Apparent temperature larger at LHC than RHIC Absolute temperature depends on blue shift

Mass dependence: charm and beauty

 R_{AA} smaller for beauty than for charm at $p_T < 20$ GeV In line with qualitative expectations for both collisional and radiative mechanisms

Jet-radius dependence of energy loss in Pb-Pb collisions

- Jet suppression increases with increasing R: wider jets lose more energy \bullet

ALICE and the Heavy-Ion program at CERN | IoP joint meeting, Liverpool | Marco van Leeuwen

Machine-learning based background subtraction enables jet measurements with R up to 0.6 at $p_T \sim 50$ GeV

Jet energy loss: difference of jet axis directions

arXiv:2303.13347

- Difference of jet axis direction, e.g.
 - winner-takes-all vs standard average
 - winner-takes-all vs Softdrop declustering
- Hybrid model: results indicate incoherent energy loss

LHC Run 5 and 6: ALICE 3

- Compact all-silicon tracker with high-resolution vertex detector
- Particle Identification over large acceptance: muons, electrons, hadrons, photons
- Fast read-out and online processing

Letter of Intent: LHCC-2022-009

ALICE upgrade path: improvement of detector performance

1000

R&D and scoping discussions ongoing: more in Dec meeting

DD azimuthal correlations

- Angular decorrelation directly probes QGP scattering
 - Signal strongest at low p⊤
- Very challenging measurement: need good purity, efficiency and η coverage
 → heavy-ion measurement only possible with ALICE 3

