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Anatomy of LHC collisions

Merton Magpie
A big thank you to everyone for your
lovely feedback following the last
issue. 

As the new layout was so warmly
received, we have decided continue to
expand each edition, but move to
publishing once a term.

Please do share any stories as they
pop up throughout the term with this
handy form.

Happy Oxmas to you all!

Rebecca Wilson, Magpie Editor 
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“Hard” means large momentum transfers  1 GeV≫
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Hard 
Processes
“Hard” means large momentum transfers  1 GeV≫

Down to momentum transfers  1 GeV∼

➜ Perturbative Approximations 

For scales :  

QCD Running Coupling 

μ > 1 GeV
αs(μ) < 1

Anatomy of LHC collisions

https://arxiv.org/abs/2203.11601


Perturbative Approaches

4

๏P.T. ~ Calculate the area of a shape ( ) with higher and higher detail 
•Difference from exact area  

dσ
∝ αn+1

LO NLO

N2LO N3LO

Example: Koch Snowflake

Note: (over)simplified analogy, mainly for IR structure. More at each order than shown here.
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Perturbative Approaches

5

๏P.T. ~ Calculate the area of a shape ( ) with higher and higher detail 
•Difference from exact area  

dσ
∝ αn+1

LO NLO

N2LO N3LO

Example: Koch Snowflake

Note: (over)simplified analogy, mainly for IR structure. More at each order than shown here.
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•Massless gauge theories 
•Scale invariance ➜ fractal substructure 
•(+ not hard to build in running coupling, masses)R
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Why go beyond Fixed-Order perturbation theory?
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๏Schematic example:  
•Calculation of the fraction of events passing a radiation (jet) veto: 

๏  

•   

•

Logs arise from integrals over propagators

LO⏞
1 −

NLO

αs(L2 + L + F1) +
NNLO

α2
s (L4 + L3 + L2 + L + F2) + …

L ∝ ln(Q2
veto / Q2

hard)

( ∝
1
q2 )



The Case for Embedding Fixed-Order Calculations within Showers

7

 %-level precision @ LHC    NNLO + NNLL  = Our Target⇒

Bremsstrahlung Resummations (Showers) extend domain of validity of perturbative calculations

L ≡ | log(Q2/Q2
Born) |

Not quite there (yet) — but close …
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Towards True* NNLO Matching
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๏Idea: Use (nested) Shower Markov Chain as NNLO Phase-Space Generator 
•Harnesses the power of showers as efficient phase-space generators for QCD  

๏ Efficient: Pre-weighted with the (leading) QCD singular structures = soft/collinear poles 

•

๏Different from conventional Fixed-Order phase-space generation (eg VEGAS)

Born Born +1 Born +2Singularities Singularities

*In the sense of the fixed-order and shower calculations matching each other point by point in each phase space

Born +2

Born +1

Born

Sho
w

er evo
lutio

n



๏Continue shower afterwards  
•No auxiliary / unphysical scales   expect small matching systematics⇒

Towards True* NNLO Matching

9

*In the sense of the fixed-order and shower calculations matching each other point by point in each phase space

Born +2

Born +1

Born

…
Sho

w
er evo

lutio
n

NNLO + …

NLO + …

LO + …

Shower

VINCIA NNLO

• Proof of concept 
for  

• arXiv:2108.07133  
arXiv:2310.18671

Z → qq̄

Need: 
➊ Born-Local NNLO ( ) K-factors:  

➋ NLO ( ) MECs in the first  shower emission:  

➌ LO ( ) MECs for next (iterated)  shower emission:  

➍ Direct  branchings for unordered sector, with LO ( ) MECs: 

𝒪(α2
s ) kNNLO(Φ2)

𝒪(α2
s ) 2 → 3 k2→3

NLO(Φ3)
𝒪(α2

s ) 2 → 3 k3→4
LO (Φ4)

2 → 4 𝒪(α2
s ) k2→4

LO (Φ4)

https://inspirehep.net/literature/1905669
https://arxiv.org/abs/2310.18671
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New Discoveries in Hadronization
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๏What a strange world we live in, said ALICE 
•Ratios of strange hadrons to pions strongly 
increase with event activity 

June 
2017

D.D.	Chinellato	– 38th	 International	Conference	on	High	Energy	Physics

Relative Strangeness 
Production
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• Quantified via strange to non-strange 
integrated particle ratios vs d"#$/d&

• Significant enhancement of strange 
and multi-strange particle production 

• MC predictions do not describe this 
observation satisfactorily

5

ALICE, arXiv:1606.07424
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[1] Comput. Phys. Commun. 178 (2008) 852–867
[2] JHEP 08 (2011) 103
[3] Phys. Rev. C 92, 034906 (2015)

[1]
[2]

[3]

(sss)

(dss)

(uds)

(ds̄)

LHC  pp s = 7 TeV

Default 
Pythia.  
(Monash)

๏ Conventional models (eg 
Default PYTHIA) ➜ constant 

strangess fractions
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 Λ+
c

(cud)
๏LHC experiments also 
report very large (factor-10) 
enhancements in heavy-
flavour baryon-to-meson 
ratios at low pT! 

•

Figure from Altmann & PZS, String Junctions Revisited, in progress

Charm hadron composition – 1

EPS-HEP 2021 | Highlights from the ALICE experiment | K. Reygers

Charm hadronization in pp (1):

26

More charm quarks in baryons in pp than in e+e– and ep collisions

Charm quarks hadronize into baryons 40% of the time

~ 4 times more than in e+e–

arXiv:2105.06335 talk Luigi Dello Stritto

K. Reygers, EPS-HEP 2021

EPS-HEP 2021 | Highlights from the ALICE experiment | K. Reygers
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p
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0.80
/D

+ c
Λ

ALICE
| < 0.5y|

 = 5 TeVspp, 
 = 13 TeVspp, 

PYTHIA 8.243, Monash 2013

          PYTHIA 8.243, CR-BLC:
Mode 0 Mode 2
Mode 3

SHM+RQM
Catania
QCM

ALI-DER-493847

Charm hadronization in pp (3)

28

 ratio in pp significantly different than in e+e–�+c /D0
arXiv:2011.06079

Charm quark fragmentation not universal!

e+e�
Standard PYTHIA 8 below data

Fair description by 
‣ PYTHIA 8 with CR 
‣ Coalescence + fragmentation (Catania) 
‣ SH mode + RQM  

(T = 170 MeV, additional states crucial)

Measurement of charmed hadrons down to 
unprecedentedly low pT at midrapidity

�+c (udc) � pK��+
� pK0s

arXiv:2106.08278

⇤+
c /D0 four times higher

than in e+e�!
But e+e� result recovered
at large p?.

Torbjörn Sjöstrand Nonperturbative models in PYTHIA slide 6/23

(Will come back 
to these)

•Conventional models (eg 
default PYTHIA) ➜ constant 
baryon-to-meson ratio



P.  S k a n d s

Long Wavelengths > 10-15 m

๏Quark-Antiquark Potential 
•As function of separation distance

17

46 STATIC QUARK-ANTIQUARK POTENTIAL: SCALING. . . 2641

Scaling plot
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FIG. 4. All potential data of the five lattices have been scaled to a universal curve by subtracting Vo and measuring energies and

distances in appropriate units of &E. The dashed curve correspond to V(R)=R —~/12R. Physical units are calculated by exploit-
ing the relation &cr =420 MeV.

AM~a=46. 1A~ &235(2)(13) MeV .

Needless to say, this value does not necessarily apply to
full QCD.
In addition to the long-range behavior of the confining

potential it is of considerable interest to investigate its ul-
traviolet structure. As we proceed into the weak cou-
pling regime lattice simulations are expected to meet per-

turbative results. Although we are aware that our lattice
resolution is not yet really suScient, we might dare to
previe~ the continuum behavior of the Coulomb-like
term from our results. In Fig. 6(a) [6(b)] we visualize the
confidence regions in the K-e plane from fits to various
on- and off-axis potentials on the 32 lattices at P=6.0
[6.4]. We observe that the impact of lattice discretization
on e decreases by a factor 2, as we step up from P=6.0 to

150

140

Barkai '84 o
MTC '90
Our results:---

130-

120-

110-

100-

80—

5.6 5.8 6.2 6.4

FIG. 5. The on-axis string tension [in units of the quantity c =&E /(a AL ) ] as a function of P. Our results are combined with pre-
vious values obtained by the MTc collaboration [10]and Barkai, Moriarty, and Rebbi [11].

~ Force required to lift a 16-ton truck

LATTICE QCD SIMULATION. 
Bali and Schilling Phys Rev D46 (1992) 2636

What physical!
system has a !
linear potential?

Short Distances ~ “Coulomb”

“Free” Partons

Long Distances ~ Linear Potential

“Confined” Partons 
(a.k.a. Hadrons)

(in “quenched” approximation)

What physical system 
has a linear potential?

 Back to Basics — Anatomy of (Linear) Confinement
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๏On lattice, compute potential energy of a colour-singlet  state, as 
function of the distance, , between the  and :

qq̄
R q q̄

Coulomb term ∝ 1/R

Linear term with slope 
κ ∼ 1 GeV/fm

String breaks by quark pair production 

  strangeness suppression ⟹

∝
exp ( −πm2

s

κ )
exp ( −πm2

u,d

κ )➡ Model as strings (Lund Model) 



Beyond the Static Limit
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๏Regard tension  as an emergent quantity? 
Not fundamental strings                            

๏May depend on (invariant) time   
•E.g., hot strings which cool down 

Hunt-Smith & PZS EPJC 80 (2020) 11  

๏May depend on  (excitations) 
Working with E. Carragher & J. March-Russell in Oxford. 

๏May depend on environment (e.g., other strings nearby) 
•Two approaches (so far) within Lund string-model context: 

๏ Colour Ropes [Bierlich, Gustafson, Lönnblad, Tarasov JHEP 03 (2015) 148; + more recent…] 
๏ Close-Packing [Fischer & Sjöstrand JHEP 01 (2017) 140; Altmann & PZS in progress …]

κ

τ

σ

Cyclonic and Anticyclonic Winds



Non-Linear String Dynamics
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J. Altmann         Monash University

Strangeness Enhancement
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Clear observations of strangeness enhancement with 
respect to charged multiplicity [e.g. ALICE Nature Pays. 13, 535 (2017)]

Multiplets (y=0, pp 7 TeV) 

higher 
multiplets

Plot by J. Altmann
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๏MPI  lots of coloured partons scattered into the final states  
•Count # of (oriented) flux lines crossing  in pp collisions (according to PYTHIA) 

๏ And classify by SU(3) multiplet:

⟹
y = 0

E.g.:
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Monash

QCD

Close-packing  
+ strange junctions  
+ diquark suppression

J. Altmann       Monash University

Collective Effects

Diquark formation via successive colour 
fluctuations (popcorn mechanism)

vs.

Strange Junctions

Strangeness Enhancement

Dense string environments 

→ Casimir scaling of effective string tension 

→ Higher probability of strange quarks

String tension could be different from the 
vacuum case compared to near a junction

Close-packing

String breaks

Diquark Suppression

What if we allow the blue fluctuation to 
break a nearby string?

Multiplets (y=0, pp 7 TeV) 

 Note: LHC  smaller 
than at LEP

p/π

๏ Altmann & PZS work in progress …

➜ Is “emergent tension” 
driving strangeness 
enhancement in pp?

27 27

Confining fields may be reaching 
higher effective representations 

than simple  (3) ones.qq̄



Junction

What about Baryon Number?

18

Open Strings
Closed Strings

SU(3) String Junction

Types of string topologies:

Could we get these at LHC?



Figure 2.6. Junction system, involving a Y-shaped string topology between three quarks.

Figure 2.7 shows the formation of junctions due to CR, showing the reconfiguration

of three qq̄ pairs into a junction and antijunction.

(a) (b)

Figure 2.7. (a) Strings spanning qq̄ pairs. (b) A reconfiguration of the strings instead forming

a junction and corresponding antijunction. This junction configuration can only form if the

overall qqq (and thus also q̄q̄q̄) are in an overall colour singlet state.

The string-fragmentation mechanism for junctions can be formulated as an exten-

sion (albeit a complicated one) of the model for a simple string stretched between a

qq̄ pair [17]. The inclusion of junction fragmentation results in a higher number of

baryonic final states as the baryon number of the junction topology is preserved by the

fragmentation process, as seen in Figure 2.8. It should be noted that though the total

number of baryonic final states increases (i.e.
P

|B| increases where B is the baryon
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of three qq̄ pairs into a junction and antijunction.

(a) (b)

Figure 2.7. (a) Strings spanning qq̄ pairs. (b) A reconfiguration of the strings instead forming

a junction and corresponding antijunction. This junction configuration can only form if the

overall qqq (and thus also q̄q̄q̄) are in an overall colour singlet state.

The string-fragmentation mechanism for junctions can be formulated as an exten-

sion (albeit a complicated one) of the model for a simple string stretched between a

qq̄ pair [17]. The inclusion of junction fragmentation results in a higher number of

baryonic final states as the baryon number of the junction topology is preserved by the

fragmentation process, as seen in Figure 2.8. It should be noted that though the total

number of baryonic final states increases (i.e.
P

|B| increases where B is the baryon

18

New source of baryon-
antibaryon production

“QCD Colour Reconnections”

Christiansen & PZS 2015

Illustration by J. Altmann

Choose this 
string 

configuration 
instead if “string 
length” ~ total 

potential energy 
is lower

Example of 
possible colour 
configuration

Generic prediction: low pT

String Junctions at LHC ?
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๏Stochastic sampling of SU(3) group probabilities  (e.g., ) 
•  Random (re)connections in colour space (weighted by group weights)

3 ⊗ 3 = 6 ⊕ 3̄

⟹
Charm hadron composition – 1

EPS-HEP 2021 | Highlights from the ALICE experiment | K. Reygers

Charm hadronization in pp (1):

26

More charm quarks in baryons in pp than in e+e– and ep collisions

Charm quarks hadronize into baryons 40% of the time

~ 4 times more than in e+e–

arXiv:2105.06335 talk Luigi Dello Stritto

K. Reygers, EPS-HEP 2021

EPS-HEP 2021 | Highlights from the ALICE experiment | K. Reygers

0 5 10 15 20 25
)c (GeV/

T
p

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.80
/D

+ c
Λ

ALICE
| < 0.5y|

 = 5 TeVspp, 
 = 13 TeVspp, 

PYTHIA 8.243, Monash 2013

          PYTHIA 8.243, CR-BLC:
Mode 0 Mode 2
Mode 3

SHM+RQM
Catania
QCM

ALI-DER-493847

Charm hadronization in pp (3)
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 ratio in pp significantly different than in e+e–�+c /D0
arXiv:2011.06079

Charm quark fragmentation not universal!

e+e�
Standard PYTHIA 8 below data

Fair description by 
‣ PYTHIA 8 with CR 
‣ Coalescence + fragmentation (Catania) 
‣ SH mode + RQM  

(T = 170 MeV, additional states crucial)

Measurement of charmed hadrons down to 
unprecedentedly low pT at midrapidity

�+c (udc) � pK��+
� pK0s

arXiv:2106.08278

⇤+
c /D0 four times higher

than in e+e�!
But e+e� result recovered
at large p?.

Torbjörn Sjöstrand Nonperturbative models in PYTHIA slide 6/23

Pythia Default 
(Monash) ~ LEP High pT ~ LEP

ALICE 2021

×
10Predicted 

this

String Formation Beyond Leading Colour 
Christiansen & PZS JHEP 08 (2015) 003


Mode 0, 2, 3 are different causality 
restrictions (0 = none)

Λ
+ c

/D
0

Altmann & PZS in progress 

+ Collaboration with M. Kreps, Warwick

https://arxiv.org/abs/1505.01681


Summary
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๏ The Goal: use LHC measurements to test hypotheses about Nature 

Elementary Fields, 
Symmetries, 
Interactions

Problem 1: no exact solutions to QFT  
➜ Perturbative Approximations 

“Real Life”

Problem 2: Confinement 
We collide —- and observe — hadrons

d�̂0

New insights into 
perturbation theory 

— at non-trivial orders  

➜ new techniques  
(→ expect %-level 

accuracies)

New measurements 
have challenged 

conventional paradigms 

➜ study confinement  
beyond static limit


