<u>SM + Higgs results at the LHC</u>

IOP: APP, HEPP and NP Conference

Dr. Jonathon Langford

IMPERIAL

SM & shortcomings

$$\begin{split} \mathcal{L}_{\rm SM} = & \mathcal{L}_{\rm gauge} + \mathcal{L}_{\rm Higgs} + \mathcal{L}_{\rm int} + \mathcal{L}_{\rm Yukawa} \\ = & -\frac{1}{4} G^a_{\mu\nu} G^{a,\mu\nu} - \frac{1}{4} W^i_{\mu\nu} W^{i,\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} \\ & + (D^{\mu}H)^{\dagger} (D_{\mu}H) - \mu^2 H^{\dagger}H - \frac{1}{4} \lambda (H^{\dagger}H)^2 \\ & + i (\bar{L} \not{D}L + \bar{\ell} \not{D}\ell + \bar{Q} \not{D}Q + \bar{u} \not{D}u + \bar{d} \not{D}d) \\ & - (\lambda_{\ell} \bar{L} H \ell + \lambda_d \bar{Q} H d + \lambda_u \bar{Q} \tilde{H}u + \text{h.c.}) \end{split}$$

Unanswered Questions

- Gravity (quantum)
- Dark matter
- Dark energy
- Matter-antimatter asymmetry
- **Naturalness**
- Hierarchy problem
- Neutrino oscillations
- Inflation

...

50(5) SUPERSTRING Grand NOT Unification M-theory heterotic \$0(10) +4 YET Gaholonomy EgxEg Type-IA Type-I Matter THOUGHT Anti-matter 50(32 Asymmetry DF Type [[] QUANTUM (Supersymm BLACK Composit Energy Higgs lavon Gaugino Mediation 8=7 Gauge 8=6 Mediation HIDDEN DIMENSIONS Anomaly Mediation MATTER 5:3 NOT Scherkof a contraction of the second S . 2 Schwarz YET RSI NOT THOUGHT OF YET THOUGHT OF

Probing the answers

Large Hadron Collider (LHC)

Particle observatories

Two approaches:

- 1. Direct searches: see Sara's talk
- 2. Indirect searches: imprints of new physics on SM interactions

n 🕥 N ñ N n ~ \sim S n Supported by DOE and NSF

Probing the answers

Large Hadron Collider (LHC)

Particle observatories

Two approaches:

- 1. Direct searches: see Sara's talk
- 2. Indirect searches: imprints of new physics on SM interactions

n 🕥 N ñ N n ~~ $\nabla \nabla$ S n Supported by DOE and NSF

LHC overview

LHC overview

LHC overview

LHC timeline

We are here

LHC status

Run 2 (2015–2018) saw the LHC move into its precision era (>140 fb⁻¹)

Recorded Luminosity [pb¹/0.1] Start of Run 3 (2022–) has been patchy... but still some incredible highlights 150 New record for integrated lumi in $24h = 1.2 \text{ fb}^{-1}$ 100 70 50 CMS 2010, 7 TeV, 45.0 pb⁻¹ 2011, 7 TeV, 6.1 fb⁻¹ Total integrated luminosity (fb⁻¹) 0 0 0 0 0 0 0 0 0 2012, 8 TeV, 23.3 fb⁻¹ 10 2015, 13 TeV, 4.3 fb⁻¹ 2016, 13 TeV, 41.6 fb⁻¹ 2017, 13 TeV, 49.8 fb⁻¹ 2018, 13 TeV, 67.9 fb⁻¹ 2022, 13.6 TeV, 41.5 fb⁻¹ 2023, 13.6 TeV, 31.9 fb⁻¹ 1 Jan Jan Date (UTC)

2024 promises to be an outstanding year

- First collisions at 13.6 TeV on $19/3/24 \rightarrow$ Stable beams <u>this week</u> \rightarrow Ending on 25/11/24Ο
- ~145 days of p-p physics providing >100 fb⁻¹ in a single year + ~16 days of Pb-Pb! Ο

300

250

200

Detector status

arXiv:2305.16623

Run 3 upgrades have been a success \rightarrow stepping stone to HL-LHC

Experiments performing well and starting to turn out physics results...

arXiv:2309.05466

Early Run 3 analyses

• EW, top, Higgs

arXiv:2403.12902 (Sub. to Phys. Lett. B)

8

An exciting time @ LHC

- 1. Rapidly growing LHC datasets
- 2. Boom in analysis techniques: machine-learning (ML), new triggers/data-taking strategies
- **3.** Use experience from the past: Run 1 + 2
- 4. Lay foundations for a successful future: HL-LHC and beyond

9

An exciting time @ LHC

- **Rapidly growing LHC datasets** 1.
- **Boom in analysis techniques:** machine-learning (ML), new triggers/data-taking strategies 2.
- **Use experience from the past:** Run 1 + 2 3.
- Lay foundations for a successful future: HL-LHC and beyond 4.

What can we do with the large amount of data...

Standard Model Total Production Cross Section Measurements

Status: October 2023

Standard Model Total Production Cross Section Measurements

Status: October 2023

Higgs sector

- Since 2012 ATLAS + CMS have undergone a comprehensive research program to provide detailed map of Higgs sector
- Unique tool to search for new fundamental physics

Higgs @ 10

Higgs @ 10

Higgs @ 10

Higgs interactions

Ultimate precision via Higgs boson <u>statistical combinations</u> • $H \rightarrow bb, H \rightarrow WW, H \rightarrow ZZ, H \rightarrow TT, H \rightarrow \gamma\gamma, H \rightarrow \mu\mu, H \rightarrow Z\gamma$

Table 1-8. Generic size of Higgs coupling modifications from the Standard Model values when all new particles are $M \sim 1$ TeV and mixing angles satisfy precision electroweak fits. The Decoupling MSSM numbers assume $\tan \beta = 3.2$ and a stop mass of 1 TeV with $X_t = 0$ for the κ_{γ} prediction.

Model	κ_V	κ_b	κ_{γ}
Singlet Mixing	$\sim 6\%$	$\sim 6\%$	$\sim 6\%$
2HDM	$\sim 1\%$	$\sim 10\%$	$\sim 1\%$
Decoupling MSSM	$\sim -0.0013\%$	$\sim 1.6\%$	$\sim4\%$
Composite	$\sim -3\%$	$\sim -(3-9)\%$	$\sim -9\%$
Top Partner	$\sim -2\%$	$\sim -2\%$	$\sim +1\%$

Cannot rule out new physics with current precision (10-20%)

Kappa framework

arXiv:1310.8361

Going granular

- Measure Higgs boson production <u>differentially</u> in the simplified template cross section <u>(STXS)</u> framework
- Good agreement with the SM... Ο
- Large (stat-dominated) uncertainties! Ο

[arXiv:2304.05742]

[See Back-Up]

Rates \rightarrow Distributions

Going granular

- [arXiv:2403.02793] Diff. XS measurements for events with MET+jets (ATLAS)
 - Aim to be as inclusive and model-independent as possible
 - BSM interpretation: **excellent focus on reinterpretation** (HEPdata, Rivet)

 $\vec{p}_{\mathrm{T},i}$

Rare processes

HH production

Cross section ~1000x smaller than single Higgs production

Direct probe of Higgs boson self-coupling \rightarrow strong implications for early Universe dynamics

HH provides plethora of final states: a fun experimental challenge!

HH combination

- Driven by advancements in analysis techniques e.g. graph neural networks for b-jet tagging (ML) Ο
- Ultimate κ_{λ} sensitivity by combining with indirect constraint from single-Higgs analyses

HH @ Run 3

More luminosity (~250 fb⁻¹ per experiment), more energy (+10% HH cross section at 13.6 TeV)

EW precision tests

CMS-PAS-SMP-22-010

Use $Z/\gamma \rightarrow ll$ (Drell-Yan), asymmetry in lepton decay angle

Precision physics can be done at a hadron collider

Paves the way for more precision physics at the HL-LHC

Outside-of-the-box analyses

LHC to probe (g-2)

- Quantum corrections give rise to anomalous magnetic moment: $a_\ell = (g-2)/2$
- Persistent discrepancy between experiment & theory at Muon (g-2) experiment

LHC as a **photon** collider

• Answer lies in **<u>ultraperipheral collisions</u>**

Observed $\gamma\gamma \rightarrow \tau\tau$ in Pb-Pb collisions (Z⁴ enhancement)

- ATLAS: Phys. Rev. Lett. 131 (2023) 151802, CMS: Phys. Rev. Lett. 131 (2023) 151803
- Probes lower energy domain + small integrated luminosity

Can we benefit from the high integrated luminosity of LHC p-p collisions?

• Challenges: No Z⁴ enhancement, low signal acceptance (soft leptons), large backgrounds, high pile-up...

LHC as a **photon** collider

[CMS-PAS-SMP-23-005]

Looking for distinct experimental signature:

- 2 back-to-back τ leptons
- No hadronic activity close to di- τ vertex: N_{track}=0

LHC as a **photon** collider

- N_{track}=0 is an extreme challenge due to pile-up
 - Pushing detector to the max
- Simulated events are corrected for N_{track} + proton dissociation + ...

- First observation of $\gamma\gamma \rightarrow \tau\tau$ in pp collisions
 - 5.3 σ observed, 6.5 σ expected

- arXiv: 2311.07288 (sub. to Nature) and <u>CMS-PAS-TOP-23-001</u>
 - Probe entanglement in ttbar leptonic final states
 - \circ Tops decay before hadronisation \rightarrow transfer spin-state to decay products

26

$$\frac{1}{\sigma}\frac{d\sigma}{d\cos\varphi} = \frac{1}{2}(1-D\cos\varphi)$$

Particle-level Invariant Mass Range [GeV]

Both experiments have observed entanglement of top quarks at ttbar threshold

Probing fundamental quantum mechanics at the largest accelerator in the world!

Reasons to be cheerful

• Only ~5% of final (HL-)LHC dataset analysed

Reasons to be cheerful

• Only ~5% of final (HL-)LHC dataset analysed

LHC is an exploration machine: we are only now understanding its true potential

Making the most of Run 3

• Plenty of interesting physics to explore in Run 3

• Experimental techniques developed now will lay foundations for HL-LHC

Summary

- Standard Model holds strong... but not for the lack of trying!
- With our ever-growing toolset these are exciting times @ the LHC
- Presented a subset of recent SM results. For a more complete overview see Moriond 24 highlights: CMS, ATLAS
 - Higgs (STXS) Ο
 - Differential cross sections for MET+jets Ο
 - Status of di-Higgs production Ο
 - **Precision physics** Ο
 - LHC as a photon collider Ο
 - Quantum entanglement in tops Ο
- Progress in Run 3 will lay foundations for a successful HL-LHC era
 - (Personal) high importance items: EFT understanding and implications, (valid) application of ML, data-taking strategies, analysis preservation, reinterpretation ... Ο

Back-Up

1

Going granular

Rates \rightarrow Distributions

- [arXiv:2403.02793] Diff. XS measurements for events with MET+jets (ATLAS)
 - Aim to be as inclusive and model-independent as possible
 - Simultaneous measurements in MET+jets and charged-lepton+jets final states

 $\vec{E}_{\mathrm{T}}^{\mathrm{miss}} =$ $\sum \vec{p}_{\mathrm{T},i} = 0$ $\vec{p}_{\mathrm{T},i}$ observable

Going granular

- [arXiv:2403.02793] Diff. XS measurements for events with MET+jets (ATLAS)
 - Aim to be as inclusive and model-independent as possible Ο
 - Simultaneous measurements in MET+jets and charged-lepton+jets final states Ο
 - Ratios used to search for BSM Ο

Excellent focus on *reinterpretation*! (HEPdata, Rivet)

 $\sum \vec{p}_{\mathrm{T},i} = 0$

 $\vec{E}_{\mathrm{T}}^{\mathrm{miss}}$

Effective field theory (EFT)

<u>Complete theory:</u> map of mountain range with details of cracks in the rocks

Hiker does not need this level of detail

Introduce 10m grid on terrain and use average values for each square

Effective theory: discard information with length scale below some cut-off

But capture relevant physics

Same principle applied to particle physics

$$\mathcal{L}_{\rm EFT} = \mathcal{L}_{\rm SM} + \sum_{i} \frac{c_i^{(5)}}{\Lambda} \mathcal{O}_i^{(5)} + \sum_{i} \frac{c_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)} + \sum_{i} \frac{c_i^{(7)}}{\Lambda^3} \mathcal{O}_i^{(7)} + \sum_{i} \frac{c_i^{(8)}}{\Lambda^4} \mathcal{O}_i^{(8)} + \dots$$

Measure Wilson coefficients, c,

Deviations from zero are smoking gun for BSM \rightarrow And tell us where to look!

SMEFT interpretation of STXS

[arXiv:2304.05742] (Sub. to JHEP) Interpretations of combined Higgs measurements by ATLAS, including SMEFT

EFT operators affect event kinematics as well as rates \rightarrow STXS provides good framework to constrain Wilson coefficients

SMEFT interpretation of STXS (ATLAS)

[arXiv:2304.05742]

 $\mathcal{L}_{\rm EFT} = \mathcal{L}_{\rm SM} + \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{O}_i^{(6)}$

EFT affects distributions as well as rates!

Extends upon Kappa framework

Use kinematic information in STXS

Simultaneously constrain 19 types/directions of BSM physics!

Putting everything together

SMEFT is a fully consistent expansion of the SM \rightarrow correlated effects between different processes

Legacy LHC result: ultimate SM consistency test is likely to be a global EFT fit

Global EFT fits

And efforts have started...

We must understand the limitations + implications of this approach on both theory/experimental sides: LHC EFT WG

ATL-PHYS-PUB-2022-037

ATLAS Preliminary

√s =13 TeV, 36.1-139 fb⁻¹

-0.02

-0.2

-2

-10

-5

Linear parameterisation

SMEFT $\Lambda = 1$ TeV

CHG

