

Higher mass axion dark matter searches BREAD and MADMAX

Stefan Knirck Fermi National Accelerator Laboratory

Member of ADMX, BREAD and MADMAX

$$P_{\rm sig} = 2 \cdot 10^{-23} \,\mathrm{W} \cdot \left(\frac{B}{7.6 \,\mathrm{T}}\right)^2 \left(\frac{V}{136 \,L}\right) \left(\frac{C}{0.4}\right) \left(\frac{Q}{30,000}\right) \left(\frac{g_{\gamma}}{0.36}\right)^2 \left(\frac{m_a}{3 \,\mu\mathrm{eV}}\right) \left(\frac{\rho_{\rm DM}}{0.45 \,\mathrm{GeV \, cm^{-3}}}\right)$$

$$P_{\rm sig} = 2 \cdot 10^{-23} \,\mathrm{W} \cdot \left(\frac{B}{7.6 \,\mathrm{T}}\right)^2 \left(\frac{V}{136 \,L}\right) \left(\frac{C}{0.4}\right) \left(\frac{Q}{30,000}\right) \left(\frac{g_{\gamma}}{0.36}\right)^2 \left(\frac{m_a}{3 \,\mu\mathrm{eV}}\right) \left(\frac{\rho_{\rm DM}}{0.45 \,\mathrm{GeV \, cm^{-3}}}\right)$$

Introduction	BREAD	MADMAX	Concl	usion		
The Resonant Cavity – High Masses						
	$3\mu eV$	$10\mu eV$	30µeV			
E						
V	100ℓ	3 <i>l</i>	0.1ℓ			
$Q \propto V/\delta V$	30,000	10,000	3,000			
$P_{\rm sig} = 2 \cdot 10^{-23} \mathrm{W} \cdot \left(\frac{B}{7.6 \mathrm{T}}\right)^2 \left(\frac{V}{136 \ell}\right) \left(\frac{C}{0.4}\right) \left(\frac{Q}{30,000}\right) \left(\frac{g_{\gamma}}{0.36}\right)^2 \left(\frac{m_a}{3 \mu\mathrm{eV}}\right) \left(\frac{\rho_{\rm DM}}{0.45 \mathrm{GeV cm^{-3}}}\right)$						

Introduction	BREAD	MADMAX	Со	onclusior
The Resonant Cavity				
✓ hígh-æresor	nator			
		low-noíse receiver	FFT	

 m_a

✓ hígh B-field

Introduction	BREAD	MADMAX	Conclusion
The Resonant	Cavity		
√ hígh-Q	resonator		
Comp Hard	been been been been been been been been	 ✓ low-noíse receiver 	FFT

The Resonant Cavity

Stefan Knirck | Heigher Mass Axion Searches

allows usage of solenoid magnet, e.g., MRI

Introduction	E	BREAD			MADMAX Conclusion
THz Quantu	um Sensors i	in Lite	erature		[Liu <i>et al,</i> BREAD collab., arXiv:2111.12103, PRL 128 (2022) 131801]
	\overline{E}	T	NEP	<u>A</u>	
Photosensor	$\frac{L}{\mathrm{meV}}$	$\frac{1 \text{ op}}{\text{K}}$	$\frac{1021}{W/\sqrt{Hz}}$	$\frac{11_{\rm Sens}}{\rm mm^2}$	
Bolometers					
GENTEC IR LABS	[0.4, 120] [0.24, 248] [0.2, 125]	293 1.6	$1 \cdot 10^{-8}$ $5 \cdot 10^{-14}$ $2 \cdot 10^{-19}$	$\pi 2.5^2$ 1.5^2 0.2^2	[https://www.gentec-eo.com/] [https://www.irlabs.com/products/bolometers/] [Ridder <i>et al</i> , J. Low Temp. Phys. 184, 60–65 (2016)],
Single Photon C	ounters	0.3	2 · 10	0.2	[Baselmans <i>et al,</i> Astro. Astroph. 601, A89 (2017)]
QCDet SNSPD	[2, 125] $[124, 830]$	$\begin{array}{c} 0.015\\ 0.3 \end{array}$	$\frac{\frac{\mathrm{DCR}}{\mathrm{Hz}}}{\frac{\mathrm{DCR}}{\mathrm{Hz}}} = 4$	$\begin{array}{c} 0.06^2 \\ 0.4^2 \end{array}$	[Echternach <i>et al.</i> , Nat. Astron. 2, 90–97 (2018)], [Echternach <i>et al.</i> , J. Astron. Telesc. Instrum. Syst. 7, 1–8 (2021) [Hochberg, et al., Phys. Rev. Lett. 123, 151802 (2019)] [Verma, <i>et al.</i> , arXiv:2012.09979 [physics.ins-det] (2020)]

Stefan Knirck | Heigher Mass Axion Searches

Conclusion

Vision: Large-Scale BREAD

possible larger-scale version as side-experiment to ADMX-EFR at Fermilab

BREAD Prototypes

.

InfraBREAD Pilot

will enable cryogenic dark photon search at infrared (eV)

InfraBREAD Pilot

Conclusion

GigaBREAD Pilot: 10-14 GHz (50µeV)

RF Simulation

Reflector Characterization Measurement

Introduction	BREAD	MADMAX	Conclusion
Broadband I	DAQ	based on 口 Fermila	QICK platform:
	RF IF		FFT & Averaging on FPGA
signal bandwidth	IFI ADC $IFQ ADC$ $Complex data$ $I + jQ$	If the second secon	er Zynq (OS, Python)
(10.7 - 12.5) GHz	Negligik	ble Dead Time after >1s on-board averag	ing

First Data Taking Run

- 24 days science data, June 16 – July 17
- University of Chicago 41° 47' 31.6098", -87° 36' 6.141"
- sensitive to vertical dark photon polarization
- horn antenna focal spot sweep over every ~ 4hrs
- *RFI shielded Faraday cage:* dish, all RF amplifiers
- in basement: down-conversion, DAQ, slow control

Int	ro	du	ctiv	on
IIII	10	uu	CUI	JII

BREAD

MADMAX

Result

Result

Stefan Knirck | Heigher Mass Axion Searches

[limit plot adapted from cajohare.github.io/axionlimits]

Result – Exclusion Limits

[SK *et al.* (BREAD), PRL 132, 131004 (2024)]

4T MRI Magnet @ Argonne National Lab

first ALPs science run imminent

Stefan Knirck | Heigher Mass Axion Searches

Stefan Knirck | Heigher Mass Axion Searches: Derrick Rodriguez, Gabe Hoshino, Andrew Sonnenschein, SK, Ben Knepper, Mira Littmann

American Physical Society

Volume 128, Number 13

Broadband Reflector Experiment for Axion Detection (BREAD)

Pete Barry, Clarence Chang, Juliang Li, Argonne National Laboratory

Christina Wang, Caltech

Jesse Liu, University of Cambridge

Kristin Dona, Gabe Hoshino, Alex Lapuente, David Miller, Max Olberding, University of Chicago

Daniel Bowring, Gustavo I Cancelo, Claudio Chavez, Aaron Chou, Mohamed Hassan, Stefan Knirck, Samantha Lewis, Matthew Malaker, Cristian Pena, Andrew Sonnenschein, Leonardo Stefanazzi, Kevin Zvonarek, Fermilab Rakshya Khatiwada, Fermilab and Illinois Institute of Technology Gianpaolo Carosi, Lawrence Livermore National Laboratory Karl Berggren, Dip Joti Paul, Tony (Xu) Zhou, Massachusetts Institute of Technology Omid Noroozian, NASA Goddard Space Flight Center Sae Woo Nam, National Institute of Standards and Technology Huma Jafree, Randolph-Macon College Noah Kurinsky, SLAC Masha Baryakhtar, University of Washington

This work was supported by the Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

$$P_{\rm sig} = \beta^2 \times P_{\rm dish}$$

BREAD

MADMAX

[MADMAX collab., EPJC 79, 186 (2019)] [A. Caldwell *et al.*, PRL 118, 091801 (2017)]

Introduction

Conclusion

MADMAX Prototypes

Comprehensive Prototype Program

Closed Boosters (CB): $\emptyset = 100 \text{ mm}$ (**CB100**), 3 Al₂O₃ disks $\emptyset = 200 \text{ mm}$ (**CB200**), 3 Al₂O₃ disks

Open Boosters (OB): $\emptyset = 200 \text{ mm}$ (**OB200**), 1 Al₂O₃ disk

Large bore (\emptyset = 760 mm) cryostat

 $\emptyset = 300 \text{ mm}$ (**OB300**), 3 disks (Al₂O₃ & LaAlO₃)

Prototype runs @ CERN MORPURGO magnet (1.5T) and Fermilab DWL (9T)

Stefan Knirck | Heigher Mass Axion Searches

Open Booster Prototype – First Science Run

2 weeks winter break data taking

MADMAX – First Physics Result

2 weeks data taking winter 2023/24:

Stefan Knirck | Heigher Mass Axion Searches

MADMAX

Max-Planck-Institut für Physik

Max-Planck-Institu

Conclusion

MADMAX Collaboration

Telescope

1000

Conclusion

Thank you very much, Pierre!

Wave-like Dark Matter

coherent detection

Wave-like Dark Matter

incoherent detection

World's First mm-wave Dish Antenna

[SK, Yamazaki, Okesaku, Asai, Idehara, Inada; JCAP 11(2018)031, arXiv:1806.05120]

Peccei-Quinn Symmetry Breaking...

Axion Mass Predictions

[from cajohare.github.io/axionlimits]

Large-Scale Solenoid Magnets

B ₀ ² V (T ² m ³)	Magnet	Application/ Technology	Location	Field (T)	Bore (m)	Len (m)	Energy (MJ)	Cost (\$M)
12000	ITER CS	Fusion/Sn CICC	Cadarache	13	2.6	13	6400	>500
5300	CMS	Detector/Ti SRC	CERN	3.8	6	13	2660	>4581
650	Tore Supra	Fusion/Ti Mono Ventilated	Cadarache	9	1.8	3	600	
430	lseult	MRI/Ti SRC	CEA	11.75	1	4	338	
320	ITER CSMC	Fusion/Sn CICC	JAEA	13	1.1	2	640	>50 ²
290	60 T out	HF/HTS CICC	MagLab	42	0.4	1.5	1100	
250	Magnex	MRI/Mono	Minnesota	10.5	0.88	3	286	7.8
190	Magnex	MRI/Mono	Juelich	9.4	0.9	3	190	
70	45 T out	HF/Nb ₃ Sn CICC	MagLab	14	0.7	1	100	14
12	ADMX	Axion/NbTi mono	U Wash	7	0.5	1.1	14	0.4
5	900 MHz	NMR/Sn mono	MagLab	21.1	0.11	0.6	40	15

Compilation by Mark Bird, NHMFL

Stefan Knirck | Heigher Mass Axion Searches

Sensors

Heterodyne

- high resolution
- Standard Quantum Limit (SQL): $k_B T_{noise} = hf$

Single Photon Counting

e.g., nanowire detectors SNSPDs, KIDs, QCDs, ... down to ~ 1 photon/day

Introduction		ADMX			BREAD Conclusion
THz Sensor	s in Literatu	re			[Liu <i>et al,</i> BREAD collab., arXiv:2111.12103, PRL 128 (2022) 131801]
Photosensor	$rac{E}{\mathrm{meV}}$	$\frac{T_{\rm op}}{\rm K}$	$\frac{\rm NEP}{\rm W/\sqrt{Hz}}$	$rac{A_{ m sens}}{ m mm^2}$	
Bolometers					
Gentec	[0.4, 120]	293	$1 \cdot 10^{-8}$	$\pi 2.5^2$	[https://www.gentec-eo.com/]
IR LABS	[0.24, 248]	1.6	$5\cdot 10^{-14}$	1.5^{2}	[https://www.irlabs.com/products/bolometers/]
KID/TES	[0.2, 125]	0.3	$2\cdot 10^{-19}$	0.2^2	[Ridder <i>et al,</i> J. Low Temp. Phys. 184, 60–65 (2016)], [Baselmans <i>et al,</i> Astro. Astroph. 601, A89 (2017)]
Single Photon C	Counters				
QCDet	[2, 125]	0.015	$\frac{\text{DCR}}{\text{Hz}} = 4$	0.06^{2}	[Echternach <i>et al.,</i> Nat. Astron. 2, 90–97 (2018)], [Echternach <i>et al.,</i> J. Astron. Telesc. Instrum. Syst. 7, 1–8 (2021)
SNSPD	[124, 830]	0.3	$\frac{\text{DCR}}{\text{Hz}} = 10^{-4}$	0.4^2	[Hochberg, et al., Phys. Rev. Lett. 123, 151802 (2019)] [Verma <i>, et al.,</i> arXiv:2012.09979 [physics.ins-det] (2020)]

My Vision

Single Photon Sensors

Quantum Capacitance Detectors (QCDet, ~ 1.5THz)

Credit: Rakshya Khatiwada et. al.

Superconducting Nanowire Single Photon Detectors (SNSPD, Infrared)

→ TeraBREAD

→ InfraBREAD

Stefan Knirck | Heigher Mass Axion Searches

Stefan Knirck | Heigher Mass Axion Searches

First Prototype Reflector Characterization

Mechanical Touches

Horizontal Machine Marks O(100µm)

First Complete BREAD Reflector

dish area: $A \approx 0.7 \text{ m}^2$

GigaBREAD: RF Simulation

GigaBREAD: Coaxial Horn

GigaBREAD: Horn Characterization

servo rotary motor

3D printed plastic mount

RF absorbers

GigaBREAD: Horn Characterization

servo rotary motor

3D printed plastic mount

RF absorbers

GigaBREAD: Horn Characterization

horns show close to expected performance

GigaBREAD: Preliminary DAQ Tests

Deadtime: ~0.5s, negligible after many spectra

Averaging working

BREAD

DAQ RFI Rejection Scheme

common issue: external RFI sources couple into large bandwidth DAQ

BREAD

DAQ RFI Rejection Scheme

intrinsic RFI rejection with negligible impact on sensitivity

My Vision

Result – Injected Signal

Stefan Knirck | Heigher Mass Axion Searches

InfraBREAD: Velocity Effects

InfraBREAD: Velocity Effects

InfraBREAD: Optical Grade Reflector from LLNL

mirror-like finish, expected focal properties

Infrared Sensors: Superconducting Nanowire Single Photon Detector (SNSPD)

will enable cryogenic dark photon search at infrared (eV)

BREAD

InfraBREAD Pilot Sensitivity

MADMAX Bead Pull Calibration

Scaling up: Some Large Magnets

‡ Fermilab	CERN	DESY.	
ADMX-EFR magnet	MORPURGO	BabyIAXO	MADMAX
			~ 6 m () 9T in 1.35 m
9.4 T, 80cm bore	1.4 T, 1.6m	2 T, 0.7m	9 T, 1. 35m
solenoid	dipole		
available from ~ 2025	available	~ 2029	> 2030?
will enable mid-scale ALP searches \rightarrow need for international collaboration			

Stefan Knirck | Heigher Mass Axion Searches

Axion Facility: Dark Wave Laboratory (DWL)

leverage Fermilab infrastructure for broadband axion physics program

MACQU test solenoid

AD MAX magnet status

- Design study within innovation partnership finished:
 - \rightarrow 9.1 T dipole with 1.35 m warm bore feasible
- First important R&D results
 - Conductor based on CICC can be produced: Suppliers for conductor available
 - luced: issue IEEE Transactions on Applied Superconductivity, 33(7):1–11, 2023.

Cea

All results in special MADMAX

Bilfinger

- Copper yield strength ok after compaction
- Quench protection feasible (propagation velocity)
- Cooling concept of conductor

magnetpath forward

Path forward: Design, build and test demonstrator coils

- Stick slip heat deposition
- Extraction of heat after stick slip
- Develop conductor termination
- → Mitigate underperformance risk

Test and understand conductor production, bending, impregnation...
→ Verify production sequence

