
High memory resources
- Rod Walker , LMU

1

Motivation

● ATLAS have high memory workloads -
some irreducible

○ Sherpa evgen, HI, AOD merge, ...
○ million histograms for user systematics

● Grid hardware does not change quickly
○ unclear we would ask for more RAM per core
○ need to make better use of what we have.

● MCORE simulation uses very little RSS
○ 300MB/core on 8cores, 80MB/core on 64
○ many other workloads ~1GB/core
○ but all reserve 2GB/core

● more cores of high RSS resources
● colocation with data, e.g. to merge

○ leads to much data transfer

baseramcount ramcount/core

2

Current defaults
1000 + 500MB/coreSome justification from Gen/Sim people, e.g. HepMC3, AF3, HI, #volumes.

https://its.cern.ch/jira/browse/ATLMCPROD-10804

How to run himem at more sites

● Submit with requirements that CE pass to BS
● Batch Systems can pack nodes according to requirements

○ mix hi and lomem jobs on a node to keep cores full
● Pull model has streams of pilots with the same requirements

■ 4 sub-resources: SCORE, SCORE_HIMEM, MCORE, MCORE_HIMEM
● 2 memory ranges(per core): 0-2GB, 2GB-maxrss
● wide range leads to over-provisioning, e.g. job needing 2100MB, has 6GB reserved

○ increase granularity
■ minimum required granularity 0-1,1-2,2-4,4-6 . Better 1GB range and up to 8GB

● Push pilot submitted with specific requirements of pre-loaded job
○ MB granularity on memory but also walltime, disk space, cores

3

Maintaining job mix

● Staying below 2GB/core on PQ avoids site admin grief and accounting issue
○ 2GB is site dependent, often higher. Needs to be site config.

● Have crude limit to stop himem jobs
○ resource_type_limits.HIMEM - limit running cores, i.e. N_SCORE_HIMEM + corecount*N_MCORE_HIMEM

● Better mechanism to stay below site meanrss/core (in dev)
○ Running job sum(job.minramcount)/sum(job.corecount) < site.meanrss GB/core

■ stop dispatch of jobs with minramcount>PQ.meanrss
○ overshoot and oscillation may need tweaks

● What if we want to use pledged resources inefficiently
○ have high priority tasks and willing to leave cores idle
○ easy: don`t maintain job mix
○ unhappy site admins would need accounting solace.

4

https://atlas-cric.cern.ch/atlas/cresourceparam/list/?name=resource_type_limits.HIMEM

Sites and accounting

● Can VOs request this flexibility of pledged resources? Yes if…
○ stay below mean RSS/core OR accounting includes idle cores

● Current accounting is core HS23 * walltime seconds
○ site wants full HS23 accounted when cores full OR RSS full
○ reserve 2 cores for 4GB serial job? Works but no, because we only use 1 core

■ someone else(maybe same VO) can use that core
● sum(job.minramcount)/sum(job.corecount) /site.meanrss, over running jobs

○ <= 1: account all jobs with full HS23/core
○ >1 means cores *could* be idle.

■ effective HS23 scaled by requested RSS per core / site mean RSS
● no queued jobs, not blocked: still account higher HS23?

○ Jobs effectively using more than 1 core, but some using less than 1 - not integer

5

Other VOs

● Do they also have high memory workloads?
● CMS already have some flexibility from glide-in but at a cost

○ packing works best with many cores, i.e. whole-node
○ this is the case for native BS but not for CMS 8-core, 16GB glide-in

■ internal packing restrictive and wasteful. Rules out intra-VO sharing
■ but nothing prevents larger glide-in/whole-node

○ similar comment to Cobald-Tardis but can share between VOs
● Hope to put on agenda for WLCG workshop in May

○ feedback welcome to hone argument

6

