Heavy quark momentum broadening in a non-Abelian plasma off-equilibrium

Harshit Pandey

The Institute of Mathematical Sciences, Chennai

May 19, 2024

In collaboration with Sören Schlichting & Sayantan Sharma, Based on arXiv:2312.12280, accepted in Phys. Rev. Lett. 60th Karpacz Winter School on Theoretical Physics

• Heavy quarks, in a Heavy-ion collision (HIC), are

• Formed in the very early stages

- Formed in the very early stages
- Thus an excellent probe of the medium formed.

- Formed in the very early stages
- Thus an excellent probe of the medium formed.
- Charm quarks also show collective behaviour similar to the light quarks [ALICE Collaboration, S. Acharya et al., 18]

- Formed in the very early stages
- Thus an excellent probe of the medium formed.
- Charm quarks also show collective behaviour similar to the light quarks [ALICE Collaboration, S. Acharya et al., 18]
- To model their elliptic flow, heavy quark diffusion coefficient κ is an important ingredient.

- Formed in the very early stages
- Thus an excellent probe of the medium formed.
- Charm quarks also show collective behaviour similar to the light quarks [ALICE Collaboration, S. Acharya et al., 18]
- To model their elliptic flow, heavy quark diffusion coefficient κ is an important ingredient.
- A sizeable contribution to flow comes from the non-eq. phase, where κ is calculated:

- Formed in the very early stages
- Thus an excellent probe of the medium formed.
- Charm quarks also show collective behaviour similar to the light quarks [ALICE Collaboration, S. Acharya et al., 18]
- To model their elliptic flow, heavy quark diffusion coefficient κ is an important ingredient.
- A sizeable contribution to flow comes from the non-eq. phase, where κ is calculated:
 - Using Langevin dynamics \rightarrow valid for large N_c

• Heavy quarks, in a Heavy-ion collision (HIC), are

- Formed in the very early stages
- Thus an excellent probe of the medium formed.
- Charm quarks also show collective behaviour similar to the light quarks [ALICE Collaboration, S. Acharya et al., 18]
- To model their elliptic flow, heavy quark diffusion coefficient κ is an important ingredient.
- A sizeable contribution to flow comes from the non-eq. phase, where κ is calculated:
 - Using Langevin dynamics \rightarrow valid for large N_c
 - In the infinite mass limit from color electric field 2-point correlator

[K. Boguslavski, A. Kurkela, T. Lappi, J. Peuron, 20]

• Heavy quarks, in a Heavy-ion collision (HIC), are

- Formed in the very early stages
- Thus an excellent probe of the medium formed.
- Charm quarks also show collective behaviour similar to the light quarks [ALICE Collaboration, S. Acharya et al., 18]
- To model their elliptic flow, heavy quark diffusion coefficient κ is an important ingredient.
- A sizeable contribution to flow comes from the non-eq. phase, where κ is calculated:
 - Using Langevin dynamics \rightarrow valid for large N_c
 - In the infinite mass limit from color electric field 2-point correlator

[K. Boguslavski, A. Kurkela, T. Lappi, J. Peuron, 20]

• We have developed a novel lattice technique to study heavy quark momentum broadening.

• During the initial stages of HICs, the plasma is primarily gluon dominated with high occupancy $(f \sim \frac{1}{\alpha_s} \gg 1)$ hence gauge fields can be evolved classically using Hamilton's equations.

$$H_{YM} = \sum_{\mathbf{x},i} \frac{a_i^2}{g^2 a^3} \frac{E_{\mathbf{x}}^i E_{\mathbf{x}}^i}{2} + \sum_{\mathbf{x},i,j} \frac{a^3}{g^2 a_i^2 a_j^2} \operatorname{Re} \operatorname{Tr} \left[\mathbf{1} - U_{ij}^{\Box}(\mathbf{x}) \right]$$

• During the initial stages of HICs, the plasma is primarily gluon dominated with high occupancy $(f \sim \frac{1}{\alpha_s} \gg 1)$ hence gauge fields can be evolved classically using Hamilton's equations.

$$H_{YM} = \sum_{\mathbf{x},i} \frac{a_i^2}{g^2 a^3} \frac{E_{\mathbf{x}}^i E_{\mathbf{x}}^i}{2} + \sum_{\mathbf{x},i,j} \frac{a^3}{g^2 a_i^2 a_j^2} \operatorname{Re} \operatorname{Tr} \left[\mathbf{1} - U_{ij}^{\Box}(\mathbf{x}) \right]$$

 Such a system undergo a rapid memory loss at late times and enter a self-similar scaling regime. [J. Berges, K. Boguslavski, S. Schlichting, and R. Venugopalan, 14]

• We have performed our simulations on large volume $N_s^3 = 256^3$ lattice, with lattice spacing $Qa_s = 0.5$, with $N_c = 2$ and $N_f = 1$.

- We have performed our simulations on large volume $N_s^3 = 256^3$ lattice, with lattice spacing $Qa_s = 0.5$, with $N_c = 2$ and $N_f = 1$.
- We consider the following initial phase-space distribution of the gluons, motivated from Color Glass condensate effective theory

[L. McLerran and R. Venugopalan, 94]

$$g^2 f_g(p) = n_0 \frac{Q}{p} e^{-\frac{p^2}{2Q^2}}$$

where $n_0/g^2 >> 1$. We've chosen n_0 to be 0.2.

• To be deep within the self-similar scaling regime we have evolved the gauge fields till Qt = 1500 where the distribution is:

$$\left(\frac{\tilde{p}}{Q}\right)^3 f_S(\tilde{p}) = (Qt)^{\frac{1}{7}} \left(\frac{|\mathbf{p}|}{Q}\right)^3 f(|\mathbf{p}|, t)$$

(Here, $\tilde{p} = (Qt)^{-\frac{1}{7}} |\mathbf{p}|.$)

• To be deep within the self-similar scaling regime we have evolved the gauge fields till Qt = 1500 where the distribution is:

$$\left(\frac{\tilde{p}}{Q}\right)^{3} f_{\mathcal{S}}(\tilde{p}) = (Qt)^{\frac{1}{7}} \left(\frac{|\mathbf{p}|}{Q}\right)^{3} f(|\mathbf{p}|, t)$$

(Here, $\tilde{p} = (Qt)^{-\frac{1}{7}} |\mathbf{p}|$.)

 In analogy to the equilibrium plasma, there is a clear separation of scales here as well

$$\sqrt{\sigma(t)} < {m_{\mathcal{D}}(t) lpha < m_{\mathcal{D}}(t) \ll \Lambda(t) \ \sim Q(Qt)^{-3/10} \sim Q(Qt)^{-1/7} \sim Q(Qt)^{1/7}}$$

• To be deep within the self-similar scaling regime we have evolved the gauge fields till Qt = 1500 where the distribution is:

$$\left(\frac{\tilde{p}}{Q}\right)^{3} f_{\mathcal{S}}(\tilde{p}) = (Qt)^{\frac{1}{7}} \left(\frac{|\mathbf{p}|}{Q}\right)^{3} f(|\mathbf{p}|, t)$$

(Here,
$$\widetilde{p} = (Qt)^{-\frac{1}{7}} |\mathbf{p}|.)$$

 In analogy to the equilibrium plasma, there is a clear separation of scales here as well

$$\sqrt{\sigma(t)} < m_D(t) \ll \Lambda(t) \ \sim Q(Qt)^{-3/10} \sim Q(Qt)^{-1/7} \sim Q(Qt)^{1/7}$$

• Plasma in the self-similar regime represents a characteristic non-equilibrium state which we use as our initial state.

Evolving the heavy quarks

• We have implemented for the first time the evolution of heavy quarks as relativistic particles using Wilson-Dirac Hamiltonian on the lattice.

Evolving the heavy quarks

• We have implemented for the first time the evolution of heavy quarks as relativistic particles using Wilson-Dirac Hamiltonian on the lattice.

• Our formalism is thus much more general in comparison to studies done earlier in the infinite-mass limit with non-relativistic quarks.

Evolving the heavy quarks

• We have implemented for the first time the evolution of heavy quarks as relativistic particles using Wilson-Dirac Hamiltonian on the lattice.

- Our formalism is thus much more general in comparison to studies done earlier in the infinite-mass limit with non-relativistic quarks.
- We have chosen a wide set of quark masses, m/Q = 1.2, 2.1, 4.2, 6.0, 12.0.For $Q \sim 1$ GeV, the choice of m/Q = 1.2 represents a particle with mass close to that of the charm quark.

In-Medium effects on the quark quasi-particles

• We obtain effective mass (*m_{eff}*) via fit to spectral function and subtract the bare mass to obtain medium-induced mass

In-Medium effects on the quark quasi-particles

• We obtain effective mass (*m_{eff}*) via fit to spectral function and subtract the bare mass to obtain medium-induced mass

• Width of quasi-particles decreases $> 10 \times$ going from light to heavy.

Observations from the analysis of spectral functions

• For $m_{bare}/Q < 0.1$: medium modification effects are similar and large width \implies behaves more like a collective excitation than a weakly-interacting quasi-particle, doesn't make much sense to talk about diffusion.

Observations from the analysis of spectral functions

- For $m_{bare}/Q < 0.1$: medium modification effects are similar and large width \implies behaves more like a collective excitation than a weakly-interacting quasi-particle, doesn't make much sense to talk about diffusion.
- For $m_{bare}/Q > 2.0$: in-medium mass is significantly lesser signifying more stable quasi-particles \rightarrow onset of heavy-quark NR regime. Small width, hence interacts as a quasi-particle with the medium to get kicks from gluons and diffuse.

Observations from the analysis of spectral functions

- For $m_{bare}/Q < 0.1$: medium modification effects are similar and large width \implies behaves more like a collective excitation than a weakly-interacting quasi-particle, doesn't make much sense to talk about diffusion.
- For $m_{bare}/Q > 2.0$: in-medium mass is significantly lesser signifying more stable quasi-particles \rightarrow onset of heavy-quark NR regime. Small width, hence interacts as a quasi-particle with the medium to get kicks from gluons and diffuse.
- Intermediate $m_{bare}/Q \approx 1.2$, i.e. close to charm mass lies in the transient region \implies may diffuse similar to heavier quarks but has to be evolved relativistically to capture the correct dynamics.

Momentum Broadening: How do we calculate it?

• We start with a single quark in a fixed momentum (P) and spin polarization (s) mode with initial conditions

$$egin{aligned} &\langle b^{\dagger}_{\lambda}(t=0,\mathbf{p})b_{\lambda'}(t=0,\mathbf{p}')
angle = \delta_{\lambda\lambda'}\;\delta_{\mathbf{p}\mathbf{p}'}\;\delta_{\lambda s}\;\delta_{\mathbf{p}\mathbf{P}}\ &\langle d^{\dagger}_{\lambda}(t=0,\mathbf{p})d_{\lambda'}(t=0,\mathbf{p}')
angle = 0 \end{aligned}$$

Momentum Broadening: How do we calculate it?

• We start with a single quark in a fixed momentum (P) and spin polarization (s) mode with initial conditions

$$egin{aligned} &\langle b^{\dagger}_{\lambda}(t=0,\mathbf{p})b_{\lambda'}(t=0,\mathbf{p}')
angle = \delta_{\lambda\lambda'}\;\delta_{\mathbf{pp}'}\;\delta_{\lambda\mathfrak{s}}\;\delta_{\mathbf{pP}}\ &\langle d^{\dagger}_{\lambda}(t=0,\mathbf{p})d_{\lambda'}(t=0,\mathbf{p}')
angle = 0 \end{aligned}$$

• Evolving the quark fields, at time t' is represented as,

$$\Psi(t', \mathbf{x}) = rac{1}{\sqrt{N^3}} \sum_{\lambda, \mathbf{p}} \left[\phi^u_{\lambda, \mathbf{p}}(t', \mathbf{x}) b_\lambda(t'=0, \mathbf{p}) + \phi^v_{\lambda, \mathbf{p}}(t', \mathbf{x}) d^\dagger_\lambda(t'=0, \mathbf{p})
ight]$$

Momentum Broadening: How do we calculate it?

• We start with a single quark in a fixed momentum (P) and spin polarization (s) mode with initial conditions

$$egin{aligned} &\langle b^{\dagger}_{\lambda}(t=0,\mathbf{p})b_{\lambda'}(t=0,\mathbf{p}')
angle = \delta_{\lambda\lambda'}\;\delta_{\mathbf{pp}'}\;\delta_{\lambda\mathfrak{s}}\;\delta_{\mathbf{pP}}\ &\langle d^{\dagger}_{\lambda}(t=0,\mathbf{p})d_{\lambda'}(t=0,\mathbf{p}')
angle = 0 \end{aligned}$$

• Evolving the quark fields, at time t' is represented as,

$$\Psi(t',\mathbf{x}) = rac{1}{\sqrt{N^3}} \sum_{\lambda,\mathbf{p}} \left[\phi^u_{\lambda,\mathbf{p}}(t',\mathbf{x}) b_\lambda(t'=0,\mathbf{p}) + \phi^v_{\lambda,\mathbf{p}}(t',\mathbf{x}) d^\dagger_\lambda(t'=0,\mathbf{p})
ight]$$

• Momentum mode occupancy is then calculated as,

$$rac{dN}{d^3 \mathbf{q}} = \sum_{\lambda'} |u^\dagger_{\lambda'}(\mathbf{q}) \widetilde{\phi}^u_s(t',\mathbf{P})|^2$$

Momentum Broadening of heavy quarks: This is what it looks like!

• Starting with zero initial momenta, the momentum distribution broadens due to kicks it receives from the gluon plasma.

Quantifying broadening through second moment of the momentum distribution

Slide 11 of 15

Extracting momentum diffusion coefficient κ at late times

• We have done a comprehensive study of real-time quark spectral functions with varying masses inside a non-Abelian plasma off-equilibrium using first-principle lattice simulations.

- We have done a comprehensive study of real-time quark spectral functions with varying masses inside a non-Abelian plasma off-equilibrium using first-principle lattice simulations.
- We have set up a new formalism to study heavy quark momentum broadening and extraction of heavy quark momentum diffusion coefficient.

- We have done a comprehensive study of real-time quark spectral functions with varying masses inside a non-Abelian plasma off-equilibrium using first-principle lattice simulations.
- We have set up a new formalism to study heavy quark momentum broadening and extraction of heavy quark momentum diffusion coefficient.
- We find that there are large corrections to momentum broadening of charm quarks in full relativistic treatment without resorting to expansion in $1/m^2$ about infinite mass limit.

- We have done a comprehensive study of real-time quark spectral functions with varying masses inside a non-Abelian plasma off-equilibrium using first-principle lattice simulations.
- We have set up a new formalism to study heavy quark momentum broadening and extraction of heavy quark momentum diffusion coefficient.
- We find that there are large corrections to momentum broadening of charm quarks in full relativistic treatment without resorting to expansion in $1/m^2$ about infinite mass limit.
- Currently, we are studying the drift and broadening phenomena for finite initial momenta and also looking for possible extension of this technique in a thermal quark-gluon plasma.

Thanks :)

Back-up slide: Value of κ with varying m_{bare}/Q

Quark mass, m/Q	κ/Q^3 (×10 ⁻⁵)
1.2	37.13 (5)
2.1	16.54 (4)
4.2	8.64 (2)
6.0	7.24 (1)
12.0	6.20 (2)
∞ (EE-correlator)	5.227 (3)