Probing the shape of QGP using high-p tomography

- Bithika Karmakar
- Incubator of Scientific Excellence Centre for Simulations of Superdense Fluids University of Wrocław, Poland
 - 60th Karpacz Winter School on Theoretical Physics

19 May 2024

Collaborators: Dusan Zigic, Jussi Auvinen, Pasi Huovinen, Marko Djordjevic and Magdalena Djordjevic

Contents

- Introduction
- High-p₁ energy loss: DREENA
- Probing the initial profiles
- Study of the early evolution
- Summary

Introduction

- Quark Gluon Plasma (QGP) is created in ultrarelativistic heavy-ion collisions.
- Consists of interacting quarks, antiquarks and gluons.
- Low- $p_{\perp}(p_{\perp} \leq 5 GeV)$ observables are generally used to study the medium properties.
- High- p_{\perp} partons propagate through the medium. Jet looses energy by interacting with the medium.
- The rare high- p_{\perp} particles can also become excellent probe of the QCD matter.

Initial condition model

- Initial condition models (e.g., Glauber, MC-KLN, IP Glasma etc) aim to determine the initial energy or entropy deposition.
- Bayesian analysis has been used to constrain the initial conditions using $T_{\rm R}{\rm ENTo}$ model. Nature Phys. 15, no. 11, 1113-1117 (2019)
- For a pair of projectiles A and B colling along z axis, the participant thickness is $T_{A,B}(x,y) = \int dz \,\rho_{A,B}^{part}(x,y,z).$
- The initial entropy density is $s(x, y) \propto T_R(p)$
- p = 0 is found to be preferred in Bayesian analysis when initial free streaming is considered.

;
$$T_A, T_B$$
) = $\left(\frac{T_A^p + T_B^p}{2}\right)^{1/p}$

Probing the shape of QGP droplet

- Initial free streaming not favored by high- p_{\perp} data. S. Stojku, J. Auvinen, M. Djordjevic, P. Huovinen and M. Djordjevic, Phys. Rev. C 105 (2022) 2, L021901
- Can lead to different results without free streaming.
- DREENA can be used to constrain the initial profiles with no free streaming.
- We use $p \in \{1/3, 0, -1/3, -2/3, -1\}$ to see which value the high- p_{\perp} data prefers.
- Other parameters of the bulk evolution are tuned to agree with the low- p_{\perp} data.
- We use constant η/s in each case.

DREENA

- Dynamical Radiative and Elastic ENergy loss Approach O Based on finite temperature field theory and generalized HTL approach M. Djordjevic, PRC 74, 064907, (2006); PRC 80, 064909 (2009), M. Djordjevic and U. Heinz, PRL 101, 022302
 - O Finite size dynamical medium is considered
 - O Takes into account both radiative and collisional energy losses
 - O Generalized to the case of magnetic mass and running coupling

• No fitting parameter used

Generalized DREENA-A (Adaptive)

D. Zigic, J. Auvinen, I. Salom, M. Djordjevic and P. Huovinen Phys. Rev. C 106 (2022) 4, 044909

- Generalized DREENA-A includes event-by-event fluctuating arbitrary temperature profiles.
- The medium temperature depends on the position of the parton.
- Agrees with R_{AA} , high- $p_{\perp} v_2$, v_3 . Predictions vastly underestimates high- $p_{\perp} v_4$ (High- $p_{\perp} v_4$ puzzle)
- Allows to extract bulk medium properties.

Charged hadron R_{AA} and high- $p_{\perp} v_n$ in Pb+Pb $\sqrt{s} = 5.02$ TeV

Study of early evolution of heavy-ion collision

- Although high- p_{\perp} data prefer no initial free streaming and delayed onset of hydrodynamics, it may appear unrealistic.
- We try to accommodate earlier onset of hydrodynamic evolution by considering the highly anisotropic initial profiles ($T_R ENTo p < 0$).
- We consider $\tau_0 = 1 fm$, 0.6 fm and 0.2 fm.
- Readjusted η/s and T_RENTo normalization to reproduce the low- p_{\perp} data.

Charged hadron R_{AA} and high- $p_{\perp} v_n$ in Pb+Pb $\sqrt{s} = 5.02$ TeV

BK, D. Zigic, P. Huovinen, M. Djordjevic, M.Djordjevic and J. Auvinen arXiv:2403.17817

10

- The shape of the initial state has been modulated by varying the parameter p of T_RENTo model.
- It is found that $p \approx 0$ gives the best overall fit which is consistent with the Bayesian analysis of low- p_{\perp} data.
- We tested if larger anisotropy of the initial profiles ($p \ll 0$) would allow an earlier onset of fluid dynamical evolution.
- Lower values of p enhance R_{AA} and high- $p_{\perp} v_2$, the enhancement is insufficient for facilitating an earlier onset of transverse expansion.

Summary

Thank you for your attention

European Research Council

Established by the European Commission

Early evolution using DREENA-A

S. Stojku, J. Auvinen, M. Djordjevic, P. Huovinen and M. Djordjevic, Phys. Rev. C 105 (2022) 2, L021901

0.2

0.2

0.1

 ζ_2

0

20

2

1. Cyan
$$\to \tau_q = \tau_0 = 0.2 fm$$

- 4^{9.6} ۲ Orange $\rightarrow \tau_0 = 0.2 fm; \tau_q = 1 fm$ 2.
- 3. Red \rightarrow FS; $\tau_0 = \tau_q = 1 fm$

4. Black
$$\rightarrow \tau_0 = \tau_q = 1 fm$$

• Fits low-
$$p_{\perp}$$
 data well

- Divergent is disfavored by R_{AA} data \bullet
- Delaying τ_a hardly changes v_2
- Early FS does not fit data as well
- v_2 predictions approach data when $\tau_0 = \tau_q = 1 fm$ (No early free steaming)

$$Pb + Pb\sqrt{s} = 5.02 \text{ TeV}$$

Anisotropy parameters

BK, D. Zigic, P. Huovinen, M. Djordjevic, M.Djordjevic and J. Auvinen arXiv:2403.17817