Spectral properties of non-Abelian gauge theories both in and out-of-thermal equilibrium

Ravi Shanker

The Institute of Mathematical Sciences

18th May 2024

Harshit Pandey, R.S., Sayantan Sharma, work in preparation

Ravi Shanker 60th Karpacz Winter School on Theoretical Physics

Slide 1 of 14

 Bohigas, Giannoni and Schmit conjectured that quantum systems which have a chaotic behavior in the classical limit must fall into one of the three ensembles of Random Matrix Theory (RMT).

nac

< ∃ >

< □ > < 同 > < 三

- Bohigas, Giannoni and Schmit conjectured that quantum systems which have a chaotic behavior in the classical limit must fall into one of the three ensembles of Random Matrix Theory (RMT).
- We want to study how well this conjecture is realized in an interacting quantum field theory.

DQ P

- E - E

- Bohigas, Giannoni and Schmit conjectured that quantum systems which have a chaotic behavior in the classical limit must fall into one of the three ensembles of Random Matrix Theory (RMT).
- We want to study how well this conjecture is realized in an interacting quantum field theory.
- We use first-principles lattice gauge theory techniques to study

4 E b

- Bohigas, Giannoni and Schmit conjectured that quantum systems which have a chaotic behavior in the classical limit must fall into one of the three ensembles of Random Matrix Theory (RMT).
- We want to study how well this conjecture is realized in an interacting quantum field theory.
- We use first-principles lattice gauge theory techniques to study
 - Properties implementing a particular chaotic classical realization of SU(3) gauge theory

- E -

- Bohigas, Giannoni and Schmit conjectured that quantum systems which have a chaotic behavior in the classical limit must fall into one of the three ensembles of Random Matrix Theory (RMT).
- We want to study how well this conjecture is realized in an interacting quantum field theory.
- We use first-principles lattice gauge theory techniques to study
 - Properties implementing a particular chaotic classical realization of SU(3) gauge theory
 - A quantum phase of SU(3) and show that it belongs to a particular RMT universality class

DQ P

Our motivation comes from the general picture of heavy-ion collisions

Fig. courtesy S. Schlichting, Quark Matter 2015

ৰ া > ৰ বি > ৰ ই > ই ৩৭৫ Ravi Shanker 60th Karpacz Winter School on Theoretical Physics Slide 3 of 14 We implement a classical state of SU(3) which is believed to be formed in the initial stages of a heavy-ion collision experiment,
 → characterized by a large density of gluons.

B b

nac

The outline of this work

- We implement a classical state of SU(3) which is believed to be formed in the initial stages of a heavy-ion collision experiment,
 → characterized by a large density of gluons.
- As such a state expands rapidly, energy density decreases cooling it down.

DQ P

- We implement a classical state of SU(3) which is believed to be formed in the initial stages of a heavy-ion collision experiment,
 → characterized by a large density of gluons.
- As such a state expands rapidly, energy density decreases cooling it down.
- The quantum effects in terms of fermion (quark) production is believed to start affecting its evolution at late time leading the system to equilibrate.

- We implement a classical state of SU(3) which is believed to be formed in the initial stages of a heavy-ion collision experiment,
 → characterized by a large density of gluons.
- As such a state expands rapidly, energy density decreases cooling it down.
- The quantum effects in terms of fermion (quark) production is believed to start affecting its evolution at late time leading the system to equilibrate.
- We thus study the spectrum of this quantum version of the SU(3) gauge theory in thermal equilibrium both with and without fermions.

SOR

- E -

The classical system: SU(3) theory away from equilibrium

 A classical realization of SU(3) consists of with over-occupied infra-red gluon modes motivated from colour glass condensate effective theory of QCD

[L. D. McLerran and R. Venugopalan, Phys. Rev. D 50, 2225 (1994)]

Ravi Shanker 60th Karpacz Winter School on Theoretical Physics

Slide 5 of 14

DQ P

The classical system: SU(3) theory away from equilibrium

 A classical realization of SU(3) consists of with over-occupied infra-red gluon modes motivated from colour glass condensate effective theory of QCD

[L. D. McLerran and R. Venugopalan, Phys. Rev. D 50, 2225 (1994)]

• The distribution function of the gluons in a self-similar scaling regime exhibits a scaling relation of the form

$$g^{2}f_{g}(|\mathsf{p}|,t) = (Qt)^{-\frac{4}{7}} f_{s}\left[(Qt)^{-\frac{1}{7}} \frac{|\mathsf{p}|}{Q}\right]$$

San

The classical system: SU(3) theory away from equilibrium

 A classical realization of SU(3) consists of with over-occupied infra-red gluon modes motivated from colour glass condensate effective theory of QCD

[L. D. McLerran and R. Venugopalan, Phys. Rev. D 50, 2225 (1994)]

• The distribution function of the gluons in a self-similar scaling regime exhibits a scaling relation of the form

$$g^{2}f_{g}(|\mathbf{p}|,t) = (Qt)^{-\frac{4}{7}} f_{s}\left[(Qt)^{-\frac{1}{7}} \frac{|\mathbf{p}|}{Q}\right]$$

• The separation between two gauge trajectories starting with n_0 and $n_0 + \Delta n_0$, $\Delta n_0 = 0.001$ as a function of time, characterized by a gauge-invariant distance measure defined as,

[B. Müller and A. Traynov, Phys. Rev. Lett. 68, 23 (1992)]

$$D(U_I, U_I^{'}, t) = rac{1}{2N_{
ho}} \sum_{P} |{
m tr} \ U_P - {
m tr} \ U_P^{'}| \; .$$

SOR

b 4 3 b

Nearby trajectories exponentially separate out in time!

A positive Lyapunov exponent is a signal of chaos.

Ravi Shanker 60th Karpacz Winter School on Theoretical Physics

Slide 6 of 14

nan

The quantum version

• We now study the quantum field theory of SU(3) gauge fields in thermal equilibrium both with and without dynamical physical quarks.

Slide 7 of 14

nac

- ₹ 🖻 →

The quantum version

- We now study the quantum field theory of SU(3) gauge fields in thermal equilibrium both with and without dynamical physical quarks.
- We study spectral properties of the Dirac operator representing a massless quark which acts as a probe of the thermalized non-Abelian medium.

nac

4 E b

The quantum version

- We now study the quantum field theory of SU(3) gauge fields in thermal equilibrium both with and without dynamical physical quarks.
- We study spectral properties of the Dirac operator representing a massless quark which acts as a probe of the thermalized non-Abelian medium.
- ${\, \bullet \, }$ We measure the ratios of spacing between adjacent eigenvalues λ of the Dirac operator defined as

$$r_n = \frac{\lambda_{n+2} - \lambda_{n+1}}{\lambda_{n+1} - \lambda_n}$$

Ravi Shanker 60th Karpacz Winter School on Theoretical Physics

Is the spectrum fully described by RMT?

- We calculate $\langle \tilde{r} \rangle$, where $\tilde{r}_n = \min(r_n, \frac{1}{r_n})$.
- Three distinct regimes!

The probability distribution of ratio of level spacings

• A robust observable independent of the systematics! Ergodic bulk modes show clear agreement with predictions from RMT belonging to Gaussian Unitary Ensemble.

Renyi Entropy quantifies the amount of randomness

ъ

nac

The randomness is also in the eigenvectors: Inverse participation ratio

Ravi Shanker

60th Karpacz Winter School on Theoretical Physics

Slide 11 of 14

Can the mixed phase be understood in terms of fractals?

• We have shown a classical realization of non-Abelian SU(3) gauge theory exhibits chaotic dynamics.

Slide 13 of 14

nac

< ∃ >

< □ > < 同 >

- We have shown a classical realization of non-Abelian SU(3) gauge theory exhibits chaotic dynamics.
- Its quantum version in thermal equilibrium shows eigenspectrum properties consistent with RMT in the Gaussian unitary class irrespective of the number of dynamical quark d.o.f \rightarrow chaotic system.

4 E b

- We have shown a classical realization of non-Abelian SU(3) gauge theory exhibits chaotic dynamics.
- Its quantum version in thermal equilibrium shows eigenspectrum properties consistent with RMT in the Gaussian unitary class irrespective of the number of dynamical quark d.o.f \rightarrow chaotic system.
- We thus observe a realization of BGS conjecture in an interacting quantum field theory.

- E - E

- We have shown a classical realization of non-Abelian SU(3) gauge theory exhibits chaotic dynamics.
- Its quantum version in thermal equilibrium shows eigenspectrum properties consistent with RMT in the Gaussian unitary class irrespective of the number of dynamical quark d.o.f \rightarrow chaotic system.
- We thus observe a realization of BGS conjecture in an interacting quantum field theory.
- We want to further understand the implications of this study in the context of thermalization of gauge theories.

Thanks

Ravi Shanker 60th Karpacz Winter School on Theoretical Physics

Slide 14 of 14

500

< ∃ >

□ > < @ > < ≥