Vydział
Ifizyki

Violation of Bell Inequalities on Quantum Computers

Michał Śliwiński

|Politechnika
 Varszawska

Quantum Computers

Bits in classical computers:
\square

Classical value of a bit taken from the set:

B
Politechnika
Varszawska

Quantum Computers

Bits in classical computersQubits in quantum computers:

B
Quantum value of a qubit:
|’olitechnika Varszawska
where and

Quantum Computers

Quantum measurement:

Any quantum system that does not interact with the environment evolves unitarily:

But if you measure the system, its unitary evolution is destructed.

The outcome of the measurement is truly random.
|’olitechnika
Varszawska

Entanglement

Separable states:

Consider a system of 2 particles, whose states are denoted and . Suppose:

If the system can be described strictly as, then it is called a separable state.
|Politechnika
Varszawska

Entanglement

Separable states:

May the subsystems A and B be given as:

Thus,

Politechnika
Varszawska

Entanglement

There are also states that cannot be decomposed onto the tensor product of 2 subsystems:

Example:

Politechnika
Varszawska

Entanglement

Entangled states:

Physical interpretation of entangled states:

- We know a lot about the whole system ;
- We cannot describe any of the subsystems separately.
|’olitechnika
Varszawska

Bell Scenario

Consider the following system:

- 2 entangled qubits that cannot communicate with each other;
- 2 observables are measurable for each qubit;
- 2 scientists, Alice and Bob, are performing the experiment. Each of them has only 1 qubit.
measurement
|’olitechnika Varszawska

measurement

Bell Scenario

Alice and Bob measure their qubits simultaneously.
|’olitechnika Varszawska

They do that many times, collecting the statistics

Bell Scenario

How the system would behave in classical physics?

Classically, the whole experiment could be understood as an RNG:

Generating +1 or -1 with some prob. distr.

Outcome: +1 or -1.

We click one of the buttons: 0,1
|’olitechnika IVarszawska

Bell Scenario

RNG depending on 0 or 1
Outcome: +1 or -1.

We click one of the buttons: 0,1

Alice

|’olitechnika
Varszawska

Bell Scenario

(or other pairs of states)

Choice of the observable

Alice

Quantum scenario

, but not only.
|’olitechnika
Varszawska

Bell Scenario

Locality:

A probability distribution is named local if:
so when there exist a phenomenon that explains the behaviour of the system in classical physics.

Otherwise the system is non-local.

|’olitechnika

Varszawska

Bell Inequalities

Expectation value of a joint measurement:

Locally:

In quantum mechanics (both local and non-local cases):

|Politechnika

Varszawska

Bell Inequalities

Example:

In any local case:

There exist some entangled quantum states that violate such an inequality.

|’olitechnika
lVarszawska

Bell Inequalities

Example:

The following operators construct a non-local experiment:

We will take this state:

|Politechnika

Varszawska

Bell Inequalities

Example:

In such experiment:

The behaviour of the system is non-local, because .

|Politechnika
Varszawska

Vydział
lizizyki

Thank you

Michał Śliwiński

Violation of Bell Inequalities on Quantum Computers

|’olitechnika
 IVarszawska

