

POLITECHNIKA WARSZAWSKA

Violation of Bell Inequalities on Quantum Computers

Michał Śliwiński

Politechnika Warszawska

Karpacz 2024

Quantum Computers

Bits in classical computers:

Politechnika Warszawska

Quantum Computers

Bits in classical computer Qubits in quantum computers:

Quantum Computers

Quantum measurement:

Any quantum system that does not interact with the environment evolves unitarily:

But if you measure the system, its unitary evolution is destructed.

The outcome of the measurement is truly random.

Separable states:

Consider a system of 2 particles, whose states are denoted and . Suppose:

If the system can be described strictly as , then it is called a separable state.

Separable states:

May the subsystems A and B be given as:

Thus,

There are also states that cannot be decomposed onto the tensor product of 2 subsystems:

Example:

Entangled states:

Physical interpretation of **entangled** states:

- We know a lot about the whole system ;
- We cannot describe any of the subsystems separately.

Bell Scenario

Consider the following system:

- 2 entangled qubits that cannot communicate with each other;
- 2 observables are measurable for each qubit;
- 2 scientists, Alice and Bob, are performing the experiment. Each of them has only 1 qubit.

9

nunicate with each other; n qubit; ning the experiment.

Alice and Bob measure their qubits simultaneously.

Politechnika Warszawska

They do that many times, collecting the statistics

Bell Scenario

How the system would behave in classical physics?

Classically, the whole experiment could be understood as an RNG:

Alice

Generating +1 or -1 with some prob. distr.

We click one of the buttons: 0, 1

Politechnika Warszawska

Outcome: +1 or -1.

Politechnika Warszawska

Choice of the observable

Alice

Quantum scenario

, but not only.

Politechnika Warszawska

13

Outcome: (or other pairs of states)

Bell Scenario

Locality:

A probability distribution is named **local** if:

so when there exist a phenomenon that explains the behaviour of the system in classical physics.

Otherwise the system is **non-local**.

Politechnika Warszawska

Expectation value of a joint measurement:

Locally:

In quantum mechanics (both local and non-local cases):

Politechnika Warszawska

Example:

In any local case:

There exist some entangled quantum states that violate such an inequality.

Politechnika Warszawska

Example:

The following operators construct a non-local experiment:

We will take this state:

Politechnika Warszawska

Example:

In such experiment:

The behaviour of the system is non-local, because .

Politechnika Warszawska

POLITECHNIKA WARSZAWSKA

Thank you

Michał Śliwiński

Violation of Bell Inequalities on Quantum Computers

Politechnika Warszawska

Karpacz 2024

