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Introduction

During standard lectures on quantum and statistical mechanics, often only ideal systems or sys-
tems, that do not show quantum effects, are examined, respectively. However, when treating real
many-particle systems, we have to include inter-particle correlations as well as the particles’ quantum
character.

We will see during this lecture, that such a systematic treatment of many-particle systems is possible in
the framework of a perturbation theoretical approach. Alternatively to the perturbation expansions
described here, other approaches to calculate correlation functions have been elaborated, such as
simulation techniques, in particular path integral approaches, which are not subject of this lecture.
They are of advantage if the perturbation is strong, but they do not give analytical expressions,
especially in limiting cases.

The rules for a perturbative treatment of quantum many-particle systems are simple but cumbersome.
Very efficient new tools have been elaborated: The method of Green’s functions and diagram tech-
niques. Originally introduced in quantum field theory, these methods have been shown to be very
successful in many body theory.

Typical effects besides correlations and screening, that are already present in classical systems, are
bound state formation and degeneration in quantum systems. Their treatment via the spectral func-
tion, partial summations for quasi-particles, the screened potential and single- and more-particle
Green’s functions will be subject of this lecture.

Due to density effects, not only cluster features but also the single-particle properties are modified.
For example, energy levels are broadened, cross-sections are changed or even bound states can be
broken up at higher densities (Mott effect: bound states are dissolved because of screening and/or
Pauli blocking). These microscopic phenomena lead to the formation of quasi-particles with shifted
energies or effective masses and thus modified spectral functions, to a screened interaction and thus
a non-trivial dielectric function, density-density correlation function, and dynamical structure factor,
as well as many other exciting effects.

Not only microscopic but also the macroscopic properties are changed by many-particle effects, e.g. the
formation of bound states. These strongly modified thermodynamic, kinetic and transport properties
can be calculated using Green’s functions.

In addition, we will introduce a chemical picture, that – as an advancement of the physical one – enables
us to treat bound states and free particles on the same footing.

The concepts and methods given here are of significance in different fields of physics such as plasma
physics, semiconductor physics, solid state physics, nuclear physics. Special applications such as
phase transitions, nonequilibrium processes, or quantum field theory demand a separate special lec-
ture course.
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Necessary prerequisites to follow this lecture are standard lectures on quantum and statistical me-
chanics, in particular:

• knowledge of fundamental concepts of quantum mechanics, including second quantization and

• knowledge of the concepts and methods of statistical mechanics such as thermodynamic relations,
equilibrium statistical operator for the grand canonical ensemble, treatment of ideal quantum
gases.

These lecture notes have been developed accompanying the winter courses 2007/2008 and 2008/2009
on Quantum Statistics of Particles and Fields, that were read at the Institute of Physics of Rostock
University by Prof. Dr. Gerd Röpke.

They were based on the scriptum Greenfunktions-Technik für statistische Gesamtheiten [SR93], which
has been prepared during a WE-Heraeus summer-school in 1993 by Dr. Holger Stein, and has been
in annual use since then.

The material should fill a course of approximately 30 hours of lecture. While section 1 gives an ele-
mentary but cumbersome approach to the evaluation of mean values in interacting quantum systems,
in sections 2 and 3 the concept of the thermodynamic Green’s function and its diagrammatic rep-
resentation is developed. The following section 4 shows the evaluation of the Feynman diagrams
and introduces self-energy and polarization function. Finally, sections 5 and 6 present the Green’s
functions calculus’ virtue in some higher-level utilization, the chemical picture as a new attainment
and an outlook to further applications and enhancements.

Any general theorem or equation of high importance is highlighted by a
frame.

Proofs, comments, and additions are written in a smaller font and are

marked with a grey line to their side.

We would like to thank Dr. August Wierling for his important contributions to several sections of this
work and many valuable discussions as well as Sonja Lorenzen and Dr. Carsten Fortmann for their
helpful comments and suggestions.

Rostock,
May 2009 G. Röpke & M. Winkel



1 Perturbation theory for statistical ensembles

1.1 General relations

Within the lectures on statistical physics, mostly ideal quantum gases are considered. Their Hamil-

tonianH = T+V only contains the the single-particle (kinetic) energy

T = H(1) =
∑

k

Ekc
+
k ck with Ek =

~
2k2

2m
(1.1.1)

and does not contain (multi-particle) interaction, i.e. V = 0 holds.

The operators ck and c+k are the well-known1

fermionic a, a+

or bosonic b, b+

annihilation and creation operators with their occupation number nk = c+k ck and their re-
spective commutative relations, such as

˘
ak, a

+
k′

¯

+
= aka

+
k′ + a+

k′ak = δkk′
ˆ
bk, b

+
k′

˜

− = bkb
+
k′ − b+k′bk = δkk′ , etc.

Although often the ideal models can be evaluated very comfortably and lead to cohesive results,
this picture omits the interaction contribution V , that is evident in any many-particle system2.
For example in electrically charged particle systems, we have to consider the Coulomb poten-
tial

Vk1k2;k′
1k′

2
=

e1e2

ε0Ω |k1 − k′1|2
δk1+k2,k′

1+k′
2
δσ1σ′

1
δσ2σ′

2
(1.1.2)

with the normalization volume Ω, the respective wave-number vectors ki and k′i of the incoming and
outgoing particles and their spin σi and σ′i. See section 3.2 for a detailed discussion of this Fourier

transformed interaction.

Normally, in theoretical physics we are facing problems that do not lead straightforward to analytically
exact solutions, because the interaction of the particles among each other can be arbitrary complex

1For a more extensive recapitulation of the calculus of creation and annihilation operators (second quantization), we
recommend studying the corresponding chapters in standard textbooks about quantum mechanics. For example, in
[Nol03], there is a very detailed derivation of the form (1.1.4) of the standard Hamiltonian.

2We will later see the reason, why ideal quantum gases are successful in describing interacting systems, such as electrons
in metals, after introducing the quasi-particle concept and the chemical picture.
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1 Perturbation theory for statistical ensembles

as it is for the considered systems, for example dense plasmas or nuclear matter. In general, we face
a Hamiltonian of the type

H = H(1) +H(2) + . . . (1.1.3)

=
∑

k

Ekc
+
k ck +

1

2

∑

k1k2,k′
1k′

2

Vk1k2,k′
1k′

2
c+k1
c+k2
ck′

2
ck′

1
+ . . . , (1.1.4)

consisting of single-, two-, and possibly more-particle contributions. Using the operators of second
quantization, any observable can be decomposed in a similar structure.

We regard H(1) to be diagonal in the single-particle operators. If this is not the case (for example
in momentum representation in the case of an external potential) for momentum representation,
we have to diagonalize H(1), i.e. find a basis, where H(1) is diagonal by solving the eigenvalue
equation.

Averages of operators A are evaluated with respect to the ensembles characterization by the statistical
operator ̺:

〈A〉 = Tr {̺A} . (1.1.5)

In the following we will use the grand-canonical ensemble3, where the statistical operator is

̺(T,Ω, µ) = e−S (1.1.6)

with the entropy operator S, that satisfies

〈S〉 = −〈ln ̺〉 . (1.1.7)

A systematic cluster decomposition of the entropy operator with respect to many-particle contributions
is considered for the grand statistical operator.

Thus, the entropy is a function of temperature T = (kBβ)−1, volume Ω and chemical potential
µ.

S = S(0) + S(1) + S(2) + . . . (1.1.8)

= lnZ(T,Ω, µ) +
∑

k

s
(1)
k c+k ck +

∑

k1k2,k′
1k′

2

s
(2)
k1k2,k′

1k′
2
c+k1
c+k2
ck′

2
ck′

1
+ . . . . (1.1.9)

The summation in k is running over the usual degrees of freedom, such as momentum ~~k, spin σ,
etc.

Within this cluster decomposition,

S(0) = lnZ(T,Ω, µ) with Z(T,Ω, µ) = Tr
{

e−(S(1)+S(2))
}

(1.1.10)

3Since at least in the thermodynamic limit the different ensembles are equivalent, this choice is arbitrary, but for our
calculations the grand-canonical ensemble is more convenient. As soon as phase-transitions appear, the choice of the
thermodynamic ensemble would be important. For some more comments on the nonequilibrium case, see section 6.
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1.1 General relations

is a c-number, that guarantees for a correct normalization,

S(1) =
∑

k

s
(1)
k c+k ck (1.1.11)

is the single particle contribution that (in equilibrium) contains the kinetic energy and the chemical
potential, and S(2) a two-particle contribution, which contains two-particle correlations due to the
interaction.

In the following, we will exemplarily concentrate on fermionic particles. A generalization to bosonic
systems is possible and straightforward.

In the case of an ideal quantum gas, the two- and more-particle correlations in (1.1.9) will vanish
and

S = S(0) + S(1) = S(0) +
∑

k

β(Ek − µ) (1.1.12)

is diagonal in momentum representation.

With the statistical operator

̺ =
e−β(H−µN)

Tr
{
e−β(H−µN)

} (1.1.13)

and the evolution operator4 U ∝ e
i
~
·H·t, the problem of the ideal quantum gas can be seen as solved

and all mean values can be evaluated analytically in a closed form.

For example we find

N =
X

k

˙
a+
k ak

¸
=
X

k

fk U =
X

k

Ek
˙
a+
k ak

¸
=
X

k

Ekfk

with the Fermi-distribution

fk =
1

eβǫk + 1
with ǫk = Ek − µ

in the case of an ideal Fermi gas and the Bose distribution

gk =
1

eβǫk − 1

for an ideal Bose gas.
The wave-number summation can be transformed into an integration via

X

k

. . .→ (2s+ 1) Ω

Z
d3k

(2π)3
. . . ,

where Ω is the system volume and s the particle’s spin.

4Obviously this time evolution operator is only valid if H does not explicitly depend on time. In the case of a time-
dependent Hamiltonian (e.q. in an external potential), a time-ordering procedure has to be included, compare
application of the time-ordering operator T [. . .] in the following section.
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1 Perturbation theory for statistical ensembles

To show the relation to the thermodynamic entropy, we calculate

〈S〉 (1.1.7)
= −〈ln ̺〉 (1.1.6),(1.1.9)

=

〈

lnZ(T,Ω, µ) +
∑

k

β(Ek − µ)

〉

(1.1.14)

= lnZ(T,Ω, µ) + β
∑

k

〈Ek〉
︸ ︷︷ ︸

〈H〉=U

−β
∑

k

〈µ〉
︸ ︷︷ ︸

µN

(1.1.15)

= lnZ(T,Ω, µ) + βU − βµN (1.1.16)

⇒ U − kBTS − µN = −kBT lnZ(T,Ω, µ) = −pΩ , (1.1.17)

which is the Gibbs-Duhem-equation.
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1.2 Calculation of mean values

1.2 Perturbation expansion for calculation of mean

values

For real quantum gases, two- and possibly more-particle contributions will arise in the exponents of
the statistical operator as well as in the time evolution operator5.

By expanding the exponential functions into a power series with respect to the interaction V , the
treatment of real quantum gases can be reduced to ideal quantum gases in a perturbation the-
ory.

We use the following relation for operators A and B:

eA+B = eA

(

1 +

∫ 1

0
dτ e−τABeτ(A+B)

)

. (1.2.1)

Equation (1.2.1) can be proven by introducing two functions

F1 (λ) = eλ(A+B) F2 (λ) = eλA
„

1 +

Z λ

0

dτ e−τABeτ(A+B)

«

and differentiating them with respect to λ:

d

dλ
F1 (λ) = (A+B) eλ(A+B)

= AF1 (λ) +B eλ(A+B)

d

dλ
F2 (λ) = A eλA

„

1 +

Z λ

0

dτ e−τAB eτ(A+B)

«

+ eλA
“

e−λAB eλ(A+B)
”

= AF2 (λ) +B eλ(A+B)

Since F1 (λ) and F2 (λ) fulfill the same first-order differential equation and they agree in the

special value λ = 0: F1 (λ = 0) = 1 = F2 (λ = 0), they are identical for all values of λ. For

λ = 1, equation (1.2.1) follows.

The Gibbs ensemble (and the time evolution operator) contains exponential functions of the form
eA+B. By iterating (1.2.1), a perturbation expansion can be constructed as follows:

eA+B = eA +

∫ 1

0
dτ e(1−τ)AB eτA +

∫ 1

0
dτ

∫ τ

0
dτ1 e(1−τ)AB e(τ−τ1)AB eτ1A + . . . . (1.2.2)

This is in general the Dyson series that is also known from lectures in quantum physics, especially
on time-dependent perturbation theory.

5In nonequilibrium, we could define a relevant statistical operator ̺rel (t) with a generalized Gibbs ensemble in an
exponential form. See section 6 for further details.
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1 Perturbation theory for statistical ensembles

The fact, that the integration over τ1, τ2 ,. . . is running from zero to the predecessor
(
R τ

0
dτ1
R τ1
0
dτ2 . . .) guarantees the correct chronological order, i.e. τ ≥ τ1 ≥ τ2 ≥ . . .. This

could also be achieved by introducing a time-ordering operator similar to T [. . .] in the fol-
lowing chapter.
If A and B in (1.2.2) commute, i.e. [A,B] = 0, the integrals are trivial and the classical case

eA+B = eA ·
 ∞X

m=0

Bm

m!

!

= eA · eB

holds.

For a further evaluation another important relation can be used: If S(1) is a single-particle operator
of the form

S(1) =
∑

k

sknk , (1.2.3)

with nk = c+k ck and the annihilation operator ck for fermions (ak) or bosons (bk), the relations

eS(1)
c+k e−S(1)

= eskc+k (1.2.4)

and eS(1)
cke

−S(1)
= e−skck (1.2.5)

hold.

The proof can again be performed by introducing a formal parameter λ and differentiating
the functions

F1(λ) = eλS
(1)

c+k e−λS
(1)

F2(λ) = eλskc+k

with respect to λ:

d

dλ
F1(λ) = S(1)eλS

(1)

c+k e−λS
(1)

− eλS
(1)

c+k S
(1)e−λS

(1)

= eλS
(1)
h

S(1), c+k

i

e−λS
(1)

(1.2.3)
= eλS

(1) X

l

ˆ
slnl, c

+
k

˜
e−λS

(1)

= skF1(λ) , (A)

d

dλ
F2(λ) = skF2(λ) ,
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1.2 Calculation of mean values

where in (A) the commutator relation [nl, c
+
k ]− = [c+l cl, c

+
k ]− = δlkc

+
k has been used, that is

valid for Bose as well as for Fermi particles:

[nl, c
+
k ]− = c+l clc

+
k ± c+l c

+
k cl − c+k c

+
l cl ∓ c+l c

+
k cl

= c+l
ˆ
cl, c

+
k

˜

±
| {z }

=δlk

−
ˆ
c+k , c

+
l

˜

±
| {z }

=0

cl

= δlkck

Again F1(λ) and F2(λ) fulfill the same first-order differential equation and reach the same

value F1(λ = 0) = c+k = F2(λ = 0) at λ = 0. Thus they must be identical and (1.2.4) is

shown. Proving (1.2.5) works in the same way.

The relations (1.2.4) and (1.2.5) can be utilized for evaluating the time evolution as well as the
statistical averaging in (1.2.2), see section 1.4.

For doing so, we would have to expand in terms of multi-particle contributions, which can be expressed
by products of creation and annihilation operators. They appear for example in the interaction V .
After inserting a factor of 1 = e−S(1)

eS(1)
between those operators, the evaluation of such a product

can be reduced to applying (1.2.4) and (1.2.5)6 onto the resulting sandwich structure eS(1)
A e−S(1)

.
An example of the application of this calculus will be presented in the proof of Wick’s theorem in the
following section and in the Hartree-Fock example in section 1.4.

With the help of the relations (1.2.1), (1.2.4), and (1.2.5) it is possible to simplify the calculation of
mean values for a real quantum gas to evaluating correlation functions of an ideal quantum gas. In
the framework of our perturbation expansion, correlation functions and averaged operator products
of any order can appear.

In the following section we will derive a theorem that can be used for evaluating such high-order
correlation functions for ideal quantum systems.

6The insertion is valid because S(1) only contains single-particle contributions that mutually commute.
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1 Perturbation theory for statistical ensembles

1.3 Calculation of operator averages for ideal quantum gases and Wick’s

theorem

While for ideal quantum gases with H(1) =
∑

k Ekc
+
k ck – as we have already discussed – the statistical

operator is diagonal in the single-particle occupation number and correlation functions can be calcu-
lated in a closed form, this is not the case for the general (non-ideal) quantum gas. Here, mean-values
of a product of s operators Ai, that can be creation or annihilation operators for Bose (b+, b) or
Fermi (a+, a) particles,

Tr
{
̺0A1A2 · · ·As

}
(1.3.1)

have to be calculated using the free (ideal) statistical operator ̺0 = e−(S(0)+S(1)) with S(1) =
∑

k s
(1)
k c+k ck and the partition function of the ideal gas Z0 (T,Ω, µ) = Tr

{

e−S(1)
}

so that S(0) =

lnZ0 (T,Ω, µ).

The evaluation of (1.3.1) can be performed using Wick’s theo-
rem:

Tr
{
̺0A1A2 · · ·As

}
=

∑

all pairings
p = ({i, j} . . . {k, l})

(−1)p
∏

all pairs
{i, j} in p

〈AiAj〉 , (1.3.2)

where A1 . . . As can be any combination of creation and annihilation operators for Bose- or
Fermi-particles. In the case of fermions, the sign factor (−1)p is positive for an even num-
ber of permutations in p and negative for an odd number. For bosons, it is set to one.

With Wick’s theorem the evaluation of a high-order correlation functions is reduced to calculating
the so-called contractions 〈AiAj〉.
In the following, we will concentrate on fermions, however the results can simply be transformed to
the bosonic case by exchanging the negative signs and the Fermi functions fi, (1− fi) with positive
signs and Bose distributions gi, (1 + gi), respectively.

In (1.3.2), the decomposition of any permutation of the factors in the product A1A2 · · ·As has to be
considered as for example in

A1A2A3A4 : (+1) · 〈A1A2〉 · 〈A3A4〉 [p even] (1.3.3)

A1A2A3A4 : (−1) · 〈A1A3〉 · 〈A2A4〉 [p odd] (1.3.4)

A1A2A3A4 : (+1) · 〈A1A4〉 · 〈A2A3〉 [p even] , (1.3.5)

where the brackets denote the actual pairings.
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1.3 Wick’s theorem

Every decomposition into pairs gets a positive sign for an even number of transpositions and a negative
one for an odd number of transpositions (character p of the permutation). The sign can simply be
deduced by examining the number of crossings of the decomposition-brackets: even → +1, odd
→ −1.

For bosonic particles, the sign is positive in any case.

The single-particle average 〈AiAj〉 vanishes if Ai and Aj are both annihilation or both creation oper-
ators. A non-vanishing result is only obtained in the case of a contraction of an annihilation operator
with a creation operator which both affect the same state:

〈
a+

i aj

〉
= δij

1

eβ(Ei−µ) + 1
= δijfi (1.3.6)

〈

aia
+
j

〉

= δij
1

e−β(Ei−µ) + 1
= δij (1− fi) . (1.3.7)

for fermions and

〈
b+i bj

〉
= δij

1

eβ(Ei−µ) − 1
= δijgi (1.3.8)

〈

bib
+
j

〉

= δij
1

e−β(Ei−µ) − 1
= δij (1 + gi) . (1.3.9)

for bosons. Note, that the Kronecker symbol δij means coincidence in all single-particle quantum
numbers, i.e. besides momentum also spin, species, etc.

Hence, a nonzero result can only be obtained for an even number of operators Ai comprising the same
number of annihilation and creation operators for the appropriate states7.

The proof for Wick’s theorem is not straightforward but very instructive concerning the
construction of (1.3.2).
Examining the fermionic case, at first we calculate

Tr
˘
̺0 {A1, A2 · · ·As}+

¯
= Tr

˘
̺0A1A2 · · ·As

¯
+ Tr

8

>><

>>:

1
z }| {

̺0 `̺0´−1
A1̺

0

| {z }
A2 · · ·As

9

>>=

>>;

,

where in the second summand the cyclic invariance of the trace was used and a 1 = ̺0
`
̺0
´−1

has been inserted. Considering the underbraced term

`
̺0´−1

A1̺
0 (1.1.6),(1.1.9)

= e
P
ska

+
k
akA1e

− P
ska

+
k
ak

(1.2.4),(1.2.5)
= A1e

±s1 with s1 = β (E1 − µ) ,

where the positive sign holds for A1 = a+
1 and the negative for A1 = a1, we get

Tr
˘
̺0 {A1, A2 · · ·As}+

¯
= Tr

˘
̺0A1A2 · · ·As

¯
·
ˆ
1 + e±s1

˜

or

Tr
˘
̺0A1A2 · · ·As

¯
=

Tr
˘
̺0 {A1, A2 · · ·As}+

¯

1 + e±s1
. (A)

7Note that this is not valid for coherent states where the average 〈Ai〉 of a single creation operator can be nonzero.
However, we will only consider basis states with a defined particle number.
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1 Perturbation theory for statistical ensembles

Furthermore, the anticommutator can be evaluated step-by-step:

{A1, A2 · · ·As}+ = {A1, A2}+A3 · · ·As −A2 {A1, A3}+A4 · · ·As + . . .

. . .+A2 · · ·As−1 {A1, As}+ . (B)

N.B. the last term is positive in any case, since s is even.
As an example, we will show (B) for s = 4:

{A1, A2A3A4}+ = A1A2A3A4 +A2A3A4A1

= A1A2A3A4 +A2A1A3A4 −A2A1A3A4

−A2A3A1A4 +A2A3A1A4 +A2A3A4A1

= {A1, A2}+A3A4 −A2 {A1, A3}+A4 +A2A3 {A1, A4}+ .

The expression (B) can be simplified using

{Ai, Aj}+ = δij
(1.3.6),(1.3.7)

= 〈AiAj〉 ·
`
1 + e±si

´
:

{A1, A2 · · ·As}+ = 〈A1A2〉
`
1 + e±s1

´
A3 · · ·As

− 〈A1A3〉
`
1 + e±s1

´
A2A4 · · ·As + . . . .

As before, the positive sign holds if Ai is a creation operator and the negative sign if Ai is an
annihilation operator. Hence we get:

Tr
˘
̺0 {A1, A2 · · ·As}+

¯
= 〈A1A2〉

`
1 + e±s1

´
Tr
˘
̺0A3 · · ·As

¯

− 〈A1A3〉
`
1 + e±s1

´
Tr
˘
̺0A2A4 · · ·As

¯
+ . . . .

Now (A) can be further simplified to the recursive expression

Tr
˘
̺0A1A2 · · ·As

¯
= 〈A1A2〉Tr

˘
̺0A3 · · ·As

¯
− 〈A1A3〉Tr

˘
̺0A2A4 · · ·As

¯
+ . . .

and Wicks’s theorem (1.3.2) follows iteratively.

Wick’s theorem is valid for fermions as well as for bosons and the creation and annihilation operators
can be arbitrarily ordered as long as the statistical operator is diagonal (or at least diagonalizable) in
the single-particle states.

If the statistical operator contains two- or more-particle-contributions in the exponent, no Wick

theorem can be formulated.
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1.4 Example: Hartree-Fock approximation

1.4 Example: Evaluation of equilibrium correlation functions in

Hartree-Fock approximation

The determination of equations of state as well as the average population 〈nk〉 for the considered
systems is the fundamental problem of many-particle physics. As an example for the application of
the calculus shown in this chapter, we will determine an equation of state n(β, µ) = 1

Ω

∑

k 〈nk〉 for a
real quantum gas in Hartree-Fock-approximation.

Therefore we will use the Hamiltonian8

H =
∑

k′
Ek′nk′ +

1

2

∑

12,1′2′
V (12, 1′2′)a+

1 a
+
2 a2′a1′ (1.4.1)

for computing the expectation value of the population number in the grand-canonical ensemble

〈nk〉 = Tr {̺nk} =
Tr
{
e−β(H−µN)nk

}

Tr
{
e−β(H−µN)

} with N =
∑

k′
nk′ , (1.4.2)

considering any terms up to first order in the interaction V .

Using the Dyson series (1.2.2), the exponential function in (1.4.2) can be expanded to

e−β(H−µN)

= e−β(
P

k′(Ek′−µ)nk′+
1
2

P

12,1′2′ V (12,1′2′)a+1 a
+
2 a2′a1′) (A)

= e−β
P

k′(Ek′−µ)nk′

·

0

B
B
B
B
@

1 +

Z 1

0

dτ eτβ
P

k′(Ek′−µ)nk′

„

−β
2

«
X

12,1′2′

V (12, 1′2′)a+
1 a

+
2 a2′a1′e

−τβP

k′(Ek′−µ)nk′

| {z }

Θ

+ . . .

1

C
C
C
C
A

.

The second summand in brackets can be rewritten to

Θ = −β
2

X

12,1′2′

V (12, 1′2′)

Z 1

0

dτ eτβ
P

k′(Ek′−µ)nk′ a+
1 a

+
2 a2′a1′e

−τβP

k′(Ek′−µ)nk′ .

We can now insert a 1 = e−τβ
P

k′(Ek′−µ)nk′ · eτβ
P

k′(Ek′−µ)nk′ between any of the operators
a
(+)
k and using (1.2.4), (1.2.5):

eτβ
P

k′(Ek′−µ)nk′ a
(+)
k e−τβ

P

k′(Ek′−µ)nk′ = e±τβ(Ek−µ)a
(+)
k

(with the positive sign for creation and the negative sign for annihilation operators), we find

Θ = −β
2

X

12,1′2′

V (12, 1′2′)

Z 1

0

dτ eτβ(E1−µ)eτβ(E2−µ)e−τβ(E2′−µ)e−τβ(E1′−µ)a+
1 a

+
2 a2′a1′ .

8The summation indices 12, 1′2′ represent a summation over momentum and spin states as well as any internal quantum
number. This notation will often be used within this lecture to simplify notation with more complex expressions
containing several different sums over momentum states.
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1 Perturbation theory for statistical ensembles

For shorthand notation we write ∆E = E1 + E2 − E2′ − E1′ and after performing the inte-
gration, we reach

Θ =

(

−β
2

P

12,1′2′ V (12, 1′2′) a+
1 a

+
2 a2′a1′

eβ∆E−1
β∆E

for ∆E 6= 0

−β
2

P

12,1′2′ V (12, 1′2′) a+
1 a

+
2 a2′a1′ for ∆E = 0 .

(B)

The case ∆E = 0 had to be considered separately via direct evaluation of the integral.
However, it obviously coincides with the limit ∆E → 0 of the case ∆E 6= 0. Thus it does not
have to be treated separately in the following and (1.4.2) has the form

〈nk〉 =
Tr
n

e−β
P

k′(Ek′−µ)nk′nk
o

− β
2

P
V eβ∆E−1

β∆E
Tr
n

e−β
P

k′(Ek′−µ)nk′ a+
1 a

+
2 a2′a1′nk

o

Tr
n

e−β
P

k′(Ek′−µ)nk′

o

− β
2

P
V eβ∆E−1

β∆E
Tr
n

e−β
P

k′(Ek′−µ)nk′ a+
1 a

+
2 a2′a1′

o ,

where we dropped the arguments 12, 1′2′ in the sums and in the potential.

Identifying Z0 = Tr
n

e−β
P

k′(Ek′−µ)nk′

o

as the partition function of the non-interacting

system, the expression (for clarity, we will only give the denominator here) becomes

〈nk〉 =
numerator

Z0
“

1 − β
2

P

12,1′2′ V (12, 1′2′) eβ∆E−1
β∆E

Tr
n

e−β
P

k′(Ek′−µ)nk′ a+
1 a

+
2 a2′a1′

o

(Z0)−1
”

and with the corresponding zeroth-order statistical operator

̺0 =
1

Z0
e−β

P

k′(Ek′−µ)nk′

we have

〈nk〉 =
Tr
˘
̺0nk

¯
− β

2

P

12,1′2′ V (12, 1′2′) eβ∆E−1
β∆E

Tr
˘
̺0a+

1 a
+
2 a2′a1′nk

¯

1 − β
2

P

12,1′2′ V (12, 1′2′) eβ∆E−1
β∆E

Tr
˘
̺0a+

1 a
+
2 a2′a1′

¯ . (C)

For further progress, the traces in numerator and denominator have to be evaluated.
While

Tr
˘
̺0nk

¯
= fk

is trivial, the two other traces will be computed using Wick’s theorem (1.3.2) and
˙
a+
i aj

¸
=

δij · fi, compare (1.3.6) and (1.3.7) and remarks there.

• Evaluating Tr
˘
̺0a+

1 a
+
2 a2′a1′

¯
in the denominator of (C), we have to consider the

following contractions:

a+
1 a

+
2 a2′a1′ : (+1) ·

˙
a+
1 a

+
2

¸
〈a2′a1′〉 = 0 ,

a+
1 a

+
2 a2′a1′ : (−1) ·

˙
a+
1 a2′

¸ ˙
a+
2 a1′

¸
= −δ12′f1δ21′f2 ,

a+
1 a

+
2 a2′a1′ : (+1) ·

˙
a+
1 a1′

¸ ˙
a+
2 a2′

¸
= +δ11′f1δ22′f2 .

Summing up these contributions, we find

=⇒ Tr
˘
̺0a+

1 a
+
2 a2′a1′

¯
= (δ11′δ22′ − δ12′δ21′) f1f2 .
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1.4 Example: Hartree-Fock approximation

Thus, for the denominator, after performing the sum over 1′ and 2′ and noting that ∆E = 0

due to the δ-functions and hence eβ∆E−1
β∆E

(B)→ 1, we find

〈nk〉 =
numerator

1 − β
2

P

12 V (12, 12)exf1f2
.

The exchange potential V (12, 12)ex = V (12, 12) − V (12, 21) denotes the contribution due
to a mutual particle exchange. Note, that in the exchange part V (12, 21), the spins σ1, σ2

must coincide. Otherwise, the δ-functions in the interaction (compare the comments in the
interaction on p. 37) give zero.

• For Tr
˘
̺0a+

1 a
+
2 a2′a1′nk

¯
= Tr

˘
̺0a+

1 a
+
2 a2′a1′a

+
k ak

¯
in the numerator of (C), the fol-

lowing contractions have to be evaluated:

a+
1 a

+
2 a2′a1′a

+
k ak : (−1) · δ12′δ21′δkkf1f2fk , (D)

a+
1 a

+
2 a2′a1′a

+
k ak : (+1) · δ11′δ22′δkkf1f2fk , (E)

a+
1 a

+
2 a2′a1′a

+
k ak : (+1) · δ1kδ22′δ1′kfkf2 (1 − fk) , (F)

a+
1 a

+
2 a2′a1′a

+
k ak : (−1) · δ1kδ21′δ2′kfkf2 (1 − fk) , (G)

a+
1 a

+
2 a2′a1′a

+
k ak : (−1) · δ12′δ2kδ1′kf1fk (1 − fk) , (H)

a+
1 a

+
2 a2′a1′a

+
k ak : (+1) · δ11′δ2kδ2′kf1fk (1 − fk) . (I)

Here, only the non-vanishing contributions, i.e. those, where in any pair an annihilator
is connected with a creation operator, are listed. Again, in every case ∆E = 0 is fulfilled

due to the δ-functions, so that energy conservation is ensured and eβ∆E−1
β∆E

(B)→ 1.

Now, the fourfold sum in the numerator of (C) can further be simplified to

X

12,1′2′

V (12, 1′2′)
eβ∆E − 1

β∆E
Tr
˘
̺0a+

1 a
+
2 a2′a1′nk

¯

= fk
X

12

0

B
B
@

(D)
z }| {

−V (12, 21)+

(E)
z }| {

V (12, 12)

1

C
C
A
f1f2

+ fk (1 − fk)
X

2

0

B
B
@

(F)
z }| {

V (k2, k2)

(G)
z }| {

−V (k2, 2k)

1

C
C
A
f2

+ fk (1 − fk)
X

1

0

B
B
@

(H)
z }| {

−V (1k, k1) +

(I)
z }| {

V (1k, 1k)

1

C
C
A
f1 .

Here, we have performed the sums over 1′, 2′ and 1 or 2, respectively. We can now
rename the summation index in the term resulting for (F) and (G) from 2 → 1.
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1 Perturbation theory for statistical ensembles

Additionally assuming a symmetric interaction V (ab, cd) = V (ba, dc), we will exchange the
interacting partners in the terms resulting from (H) and (I).
Then we get

X

12,1′2′

V (12, 1′2′)
eβ∆E − 1

β∆E
Tr
˘
̺0a+

1 a
+
2 a2′a1′nk

¯

= fk
X

12

V (12, 12)exf1f2 + 2 · fk (1 − fk)
X

1

V (k1, k1)exf1 .

Bringing everything together, we end up with

〈nk〉 =
fk − βfk (1− fk)

∑

1 V (k1, k1)exf1 − β
2 fk

∑

12 V (12, 12)exf1f2

1− β
2

∑

12 V (12, 12)exf1f2

. (1.4.3)

Since we only want to consider terms of first order in V we can make use of 1
1+x

= 1 − x +

O
`
x2
´
:

〈nk〉 = fk

 

1 − β (1 − fk)
X

1

V (k1, k1)exf1 −
β

2

X

12

V (12, 12)exf1f2

!

×
 

1 +
β

2

X

12

V (12, 12)exf1f2 + O
`
V 2´

!

= fk

 

1 − β (1 − fk)
X

1

V (k1, k1)exf1

−β
2

X

12

V (12, 12)exf1f2 +
β

2

X

12

V (12, 12)exf1f2

| {z }

=0

+O
`
V 2´

1

C
C
C
C
A

.

The final result is an expression for the single-particle occupation number

〈nk〉 = fk

(

1− β (1− fk)
∑

1

V (k1, k1)exf1

)

, (1.4.4)

which can be written in the form

〈nk〉 =
1

eβ(Ek−µ+
P

1 V (k1,k1)exf1) + 1
. (1.4.5)

Especially expression (1.4.5) has a very handy structure, that will repeatedly appear in this lecture,
for example in section 4.1.
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1.4 Example: Hartree-Fock approximation

Equation (1.4.5) can be expanded in terms of V with the shorthand notation ∆EHF =
P

1 V (k1, k1)exf1:

1

eβ(Ek−µ+∆EHF) + 1
=

1

eβ(Ek−µ)eβ∆EHF + 1

=
1

eβ(Ek−µ)
`
1 + β∆EHF + O (∆EHF)2

´
+ 1

=
1

(eβ(Ek−µ) + 1)

0

B
B
B
@

1 +
eβ(Ek−µ)

eβ(Ek−µ) + 1
| {z }

1−fk

β∆EHF + O (∆EHF)2

1

C
C
C
A

.

Using 1
1+x

= 1 − x+ O
`
x2
´

we get

= fk

„

1 − β∆EHF (1 − fk) + O
“

∆EHF
”2
«

,

which is the same expression as (1.4.4).

Thus, we have finally found, that in Hartree-Fock approximation, the ideal expression 〈nk〉id = fk is
extended by a term∝ V : 〈nk〉HF = fk

(
1− β (1− fk) ∆EHF

)
with ∆EHF =

∑

1 V (k1, k1)exf1.

This correction can be interpreted as an energy shift like in (1.4.5), where we could introduce a
quasi-particle energy EHF

k = Ek + ∆EHF:

〈nk〉HF =
1

eβ(EHF
k −µ) + 1

. (1.4.6)

Corresponding terms will appear in the equation of state nHF(β, µ) = 1
Ω

∑

k 〈nk〉HF, which can also
be interpreted as the effect of a mean field and an exchange term.

Because we only have considered terms up to first order in V , the equation of state in this approxi-
mation requires the interaction to be weak. However, as shown below, it is applicable in several cases,
for example the electron gas in metals, for solids and semiconductors, or simple models of nuclear
matter where the interaction is strong9. The advantage of this picture is the possibility, to include
the strong correlations into mean-field by partial summation of an infinite number of contributions,
see chapter 4.

In the case of a stronger interaction, the Hartree-Fock approximation is not sufficient and higher
order terms have to be included. Often the summation of an infinite number of contributions is
necessary, which leads to a very confusing perturbation calculus and makes a more effective repre-
sentation necessary. Such an efficient approach will be shown in the following two chapters, which
introduces the technique of Green’s functions and their diagrammatic representation as a new con-
cept.

9Since for inhomogeneous system the momentum states cannot be used as eigenstates, the single-particle states have
to be determined in a Hartree-Fock potential in a self consistent way.
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2 Thermodynamic Green’s functions: Definitions
and properties

2.1 Definitions

As already introduced in classical statistics, the reduced distribution functions (density matrices) of
many-body systems contain any information about the systems’ properties and evolution. In the
one- and two-particle case, these density matrices are the two-point correlation function (one particle
density matrix) with an additional dependence on the parameter τ :

〈
a+

1 (τ1)a1′(τ1′)
〉

= Tr
{
̺ a+

1 (τ1)a1′(τ1′)
}

(2.1.1)

and the four-point correlation function (two-particle density matrix)

〈
a+

1 (τ1)a
+
2 (τ2)a2′(τ2′)a1′(τ1′)

〉
= Tr

{
̺ a+

1 (τ1)a
+
2 (τ2)a2′(τ2′)a1′(τ1′)

}
(2.1.2)

with the statistical operator ̺ and the entropy operator S:

̺ =
e−β(H−µN)

Tr
{
e−β(H−µN)

} = e−S . (2.1.3)

The dependence on τ is given by the modified Heisenberg picture:

A(τ) = eτ(H−µN)Ae−τ(H−µN). (2.1.4)

These matrices are special cases of more general averages of time-ordered field operators, which are
referred to as Green’s functions.1

In general,

G1

(
1τ1, 1

′τ1′
)

= −Tr
{
̺T
[
a1(τ1)a

+
1′(τ1′)

]}
(2.1.5)

is the single-particle (two-point) Green’s function,

G2

(
1τ1, 2τ2, 1

′τ1′ , 2
′τ2′
)

= −Tr
{
̺T
[
a1(τ1)a2(τ2)a

+
2′(τ2′)a

+
1′(τ1′)

]}
(2.1.6)

the two-particle Green’s function, etc.

1The formalism can also be applied to a general Gibbs-ensemble (relevant statistical operator in nonequilibrium), using
the Green’s functions technique, that will be presented in the following sections. For some further details and
keywords, see section 6.
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2 Thermodynamic Green’s functions: Definitions and properties

The parameters τi, τi′ traverse 0 ≤ τi, τi′ ≤ β.

The T [. . .]-product denotes an ordering of the factors according to the value of the parameter τ ,
so that the creation operator with smallest value of τ will appear right and growing parameter
values of τ are arranged left. Furthermore, for fermions T [. . .] contains a sign factor of (−1)p,
where p represents the number of transpositions needed for restoring the operators’ original or-
der.

For fermions T [. . .] holds

T
ˆ
a1(τ1)a

+
1′(τ1′)

˜
=

(

a1(τ1)a
+
1′(τ1′) for τ1′ < τ1

−a+
1′(τ1′)a1(τ1) for τ1 < τ1′ ,

and thus

G1

`
1τ1, 1

′τ1′
´

=

(

−Tr
˘
̺a1(τ1)a

+
1′(τ1′)

¯
for τ1′ < τ1

Tr
˘
̺a+

1′(τ1′)a1(τ1)
¯

for τ1 < τ1′ .

For bosons, the sign is positive in both cases.

Sometimes2, the thermodynamic Green’s function is introduced with imaginary times in the
Heisenberg picture, using the Hamiltonian instead of the entropy operator:

A(t) = e
i
~
tHAe−

i
~
tH

with 0 ≥ Im {t} > −i~β.

Expressions resulting from this notation differ by a factor of (−i~) and the chemical potential

µ is missing in the exponent compared with the grand canonical statistical operator. This

results in modified Matsubara frequencies zKB
ν = πν

−i~ + µ
~
, which also depend on the chemical

potential. Compare (2.1.21) for our definition of the Matsubara frequencies.

According to

G1

(
1τ1, 1

′τ1′
)

= Θ (τ1 − τ1′)G>
1 (1τ1, 1

′τ1′) + Θ (τ1′ − τ1)G<
1 (1τ1, 1

′τ1′) , (2.1.7)

where Θ (τ) is the Heaviside step-function

Θ (τ) =

{

0 for τ ≤ 0

1 for τ > 0 ,
(2.1.8)

the Green’s function can be related to the two-point correlation functions of the form

G>
1 (1τ1, 1

′τ1′) = −Tr
{
̺a1(τ1)a

+
1′(τ1′)

}
(2.1.9)

G<
1 (1τ1, 1

′τ1′) = Tr
{
̺a+

1′(τ1′)a1(τ1)
}
. (2.1.10)

2For example in [KB62] and [Ric81]
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2.1 Definitions

Thus, there is a close connection betweenG
≶
1 and the density matrices

〈
a+

1′(τ1′)a1(τ1)
〉
.

Since we are investigating thermodynamic systems in equilibrium state, the absolute ’time’ does
not play a role. While at the moment, τ looks like a time parameter, it can also be related to
temperature or entropy respectively. The respective properties for t are also valid for τ . In thermo-
dynamic equilibrium, the Green’s and correlation functions only depend on τ1 and τ1′ in the form
τ1 − τ1′ :

G1

(
1τ1, 1

′τ1′
)
≡ G1

(
11′, τ

)
=

{

G>
1 (11′, τ) for τ > 0

G<
1 (11′, τ) for τ < 0

(2.1.11)

= G1

(
1τ1 − τ1′ , 1′0

)
= G1

(
1τ, 1′0

)
= G1

(
10, 1′ − τ

)
(2.1.12)

with the new parameter τ = τ1 − τ1′ running through −β ≤ τ ≤ β.

Equation (2.1.11) can be proven by using the invariance of Tr {} under cyclic permutation of
its arguments.
Because the statistical operator ̺ of the grand canonical ensemble commutes with e−β(H−µN),
we make use of the invariance of Tr {. . .} under cyclic permutations of its operands to write

G>1
`
1τ1, 1

′τ1′
´ (2.1.9),(2.1.4)

= −Tr
n

̺ eτ1(H−µN)a1e
−τ1(H−µN)eτ1′ (H−µN)a+

1′e
−τ1′ (H−µN)

o

= −Tr
n

̺ e(τ1−τ1′)(H−µN)a1e
−(τ1−τ1′)(H−µN)a+

1′

o

≡ G>1
`
1τ1 − τ1′ , 1

′0
´

with τ1 − τ1′ > 0

and in the same way

G<1
`
1τ1, 1

′τ1′
´ (2.1.10),(2.1.4)

= Tr
n

̺ a+
1′e

(τ1−τ1′)(H−µN)a1e
−(τ1−τ1′)(H−µN)

o

≡ G<1
`
1τ1 − τ1′ , 1

′0
´

with τ1 − τ1′ < 0.

With (2.1.11), we already introduced the new notation

G1

(
1τ, 1′0

)
= G1

(
11′, τ

)
. (2.1.13)

Now we can write

G>
1

(
11′, τ

)
= −Tr

{

̺eτ(H−µN)a1e
−τ(H−µN)a+

1′

}

= −
〈
a1 (τ) a+

1′
〉

(2.1.14)

= −Tr
{

̺a1e
−τ(H−µN)a+

1′e
τ(H−µN)

}

= −
〈
a1a

+
1′ (−τ)

〉
(2.1.15)

G<
1

(
11′, τ

)
= Tr

{

̺e−τ(H−µN)a+
1′e

τ(H−µN)a1

}

=
〈
a+

1′ (−τ) a1

〉
(2.1.16)

= Tr
{

̺a+
1′e

τ(H−µN)a1e
−τ(H−µN)

}

=
〈
a+

1′a1 (τ)
〉
. (2.1.17)

The Kubo-Martin-Schwinger (KMS-)condition is an important property of the thermodynamical
Green’s function. It connects G1(11′,−τ) with G1(11′, β − τ) for 0 ≤ τ ≤ β to a quasi-periodicity
relation:
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2 Thermodynamic Green’s functions: Definitions and properties

G1

(
11′, β − τ

)
= −G1

(
11′,−τ

)
(2.1.18)

or

G>
1

(
11′, β − τ

)
= −G<

1

(
11′,−τ

)
. (2.1.19)

Thus, the thermodynamic Green’s function G1 (11′, τ) is determined by only knowing G>
1 (11′, τ), i.e.

its behavior in the interval 0 ≤ τ ≤ β orG<
1 (11′, τ) for−β ≤ τ ≤ 0, respectively.

G<
1 (11′, τ)

G>
1 (11′, τ) β−β 0

−G<
1 (11′,−τ) = G>

1 (11′, β − τ)

τ

G(11′, τ)

Schematic plot of the thermodynamic Green’s function, eq. (2.1.7), for an
ideal Fermi gas. For detailed calculations, see section 2.3.

The KMS-condition can again simply be proven by utilizing the invariance of Tr {. . .} under
cyclic permutations. Knowing that for τ ≥ 0

G
`
11′, τ

´ (2.1.7),(2.1.10)
= −Tr

n

̺ eτ(H−µN)a1e
−τ(H−µN)a+

1′

o

with ̺ = 1
Z

e−β(H−µN) and β − τ ≥ 0, we get

G
`
11′, β − τ

´
= −Tr


1

Z
e−β(H−µN)e(β−τ)(H−µN)a1e

−(β−τ)(H−µN)a+
1′

ff

= − 1

Z
Tr
n

e−τ(H−µN)a1e
−(β−τ)(H−µN)a+

1′

o

= −Tr


1

Z
e−(β−τ)(H−µN)a+

1′e
−τ(H−µN)a1

ff

= −Tr
n

̺ eτ(H−µN)a+
1′e

−τ(H−µN)a1

o

= −Tr
˘
̺a+

1′a1(−τ)
¯ (2.1.17),(2.1.7)

= −G1

`
11′,−τ

´
.
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2.1 Definitions

Due to the KMS-condition, that implies quasi-periodicity, it is possible to decompose G1 in terms of
a Fourier expansion of the form

G1

(
11′, τ

)
=

1

β

∑

ν

G1

(
11′, izν

)
e−izντ (2.1.20)

with the Matsubara frequencies zν which are defined by (2.1.18):

zν =
πν

β
, ν = ±1,±3, . . . for fermions . (2.1.21)

For bosons there is a similar periodicity condition as (2.1.18) but without alternating sign. That is
why the Matsubara frequencies in the bosonic case are given with even ν = 0,±2, . . .. Although
within this lecture we will primarily deal with fermions, we will also make use of even Matsubara

frequencies in some special cases.

We can directly show that (2.1.20) agrees with the KMS-condition (2.1.18) by putting in
(2.1.21):

G1

`
11′, β − τ

´ (2.1.20)
=

1

β

X

ν

G1

`
11′, izν

´
e−iπν
| {z }

=−1 (ν odd)

e
iπν

β
τ

= − 1

β

X

ν

G1

`
11′, izν

´
e
iπν

β
τ

(2.1.20)
= −G1

`
11′,−τ

´
.

The inverse transformation is given by

G1(11′, izν) =

∫ β

0
dτ G1

(
11′, τ

)
eizντ . (2.1.22)
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2 Thermodynamic Green’s functions: Definitions and properties

Equation (2.1.22) can be shown by some simple calculation:

Z β

0

dτ G1

`
11′, τ

´
eizντ (2.1.20)

=

Z β

0

dτ eizντ 1

β

X

ν′

G1

`
11′, izν′

´
e−izν′τ

=
1

β

X

ν′

G1

`
11′, izν′

´
Z β

0

dτ e−i(zν′−zν)τ .

While for zν′ 6= zν we can make use of e−i(zν′−zν)β = 1, because (zν′ − zν)β is an even
multiple of π:

Z β

0

dτ e−i(zν′−zν)τ =

(2.1.21)
= 1

z }| {

e−i(zν′−zν)β −1

−i (zν′ − zν)
= 0 ,

in the case of zν′ = zν , the denominator is zero and the expression is indefinite. In that case
the integral is

Z β

0

dτ e−i(zν′−zν)τ =

Z β

0

dτ 1 = β .

Thus we can write

Z β

0

dτ e−i(zν′−zν)τ = β · δzν ,zν′

and finally have

Z β

0

dτ G1

`
11′, τ

´
eizντ =

1

β

X

ν′

G1

`
11′, izν′

´
β · δzν ,zν′

= G1

`
11′, izν

´
,

so that (2.1.22) is proven.

While we introduced the thermodynamic Green’s function as some kind of useful definition, we recom-
mend considering additional literature, where a straightforward construction and extended discussion
of these definitions is performed. Two feasible examples are [Mah90] and [FW71].
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2.2 Green’s function and spectral function

2.2 Green’s function and spectral function

The frequency dependent Green’s function is closely connected to another important function which
is called the spectral function. It can be obtained by analytic continuation of the thermodynamic
Green’s function into the complex plane.

With the eigenstates |n〉 for the grand canonical operator

(H − µN) |n〉 = ǫn |n〉 , (2.2.1)

the single-particle spectral density is defined as

I1
(
11′, ω

)
= 2π

1

Z

∑

m,n

δ (ǫn − ǫm − ω) e−βǫn 〈n| a+
1′ |m〉 〈m| a1 |n〉 . (2.2.2)

It is the Fourier transform of G<
1 :

〈
a+

1′a1(τ)
〉

= G<
1

(
11′, τ

)
=

∫ ∞

−∞

dω′

2π
I1
(
11′, ω′

)
e−ω′τ , (2.2.3)

while it also satisfies

〈
a1(τ)a

+
1′
〉

= −G>
1

(
11′, τ

)
=

∫ ∞

−∞

dω′

2π
eβω′

I1
(
11′, ω′

)
e−ω′τ . (2.2.4)

Equation (2.2.3) can be shown by utilizing (2.2.1) and using that e(H−µN) |n〉 = eǫn |n〉, which
follows directly from the eigenvalue equation by performing a Taylor expansion:

Z ∞

−∞

dω′

2π
I1
`
11′, ω′´ e−ω

′τ

(2.2.2)
=

Z ∞

−∞

dω′

2π
· 1

Z

X

m,n

e−βǫn 〈n| a+
1′ |m〉 〈m| a1 |n〉 2πδ

`
ǫn − ǫm − ω′´ e−ω

′τ

=
X

m,n

e−βǫn

Z
〈n| a+

1′ |m〉 〈m| a1 |n〉 ·
Z ∞

−∞

dω′

2π
e−ω

′τ2πδ
`
ǫn − ǫm − ω′´

=
X

m,n

e−βǫn

Z
〈n| a+

1′ |m〉 〈m| a1 |n〉 eτ(ǫm−ǫn)

=
X

m,n

e−βǫn

Z
〈n| a+

1′ |m〉

〈m|eτǫm

z }| {

〈m| eτ(H−µN) a1

e−τǫn |n〉
z }| {

e−τ(H−µN) |n〉

=
X

n

e−βǫn

Z
〈n| a+

1′e
τ(H−µN)a1e

−τ(H−µN) |n〉

(2.1.17)
=

˙
a+
1′a1(τ)

¸
= G<1

`
11′, τ

´
.
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2 Thermodynamic Green’s functions: Definitions and properties

The proof for (2.2.4) works in the same way but with exchanged m and n:

Z ∞

−∞

dω′

2π
eβω

′

I1
`
11′, ω′´ e−ω

′τ

(2.2.2)
=

Z ∞

−∞

dω′

2π
eβω

′

· 1

Z

X

m,n

e−βǫn 〈n| a+
1′ |m〉 〈m| a1 |n〉 2πδ

`
ǫn − ǫm − ω′´ e−ω

′τ

=
1

Z

X

m,n

eβω′

·e−βǫn

z }| {

e−βǫm

〈m|eτǫm

z }| {

〈m| eτ(H−µN) a1

e−τǫn |n〉
z }| {

e−τ(H−µN) |n〉 〈n| a+
1′ |m〉

(2.1.15)
=

˙
a1(τ)a

+
1′

¸
= −G>1

`
11′, τ

´
.

For the Matsubara Green’s function (2.1.20), the following important connection arises:

G1

(
11′, izν

)
=

∫ ∞

−∞

dω′

2π

(

1 + eβω′
) I1 (11′, ω′)

izν − ω′
. (2.2.5)

Starting from (2.1.22) and using (2.1.7), we can write

G1

`
11′, izν

´ (2.1.22),(2.1.7)
=

Z β

0

dτ
“

Θ (τ)G>1
`
11′, τ

´
+ Θ (−τ)G<1

`
11′, τ

´

| {z }

=0, because τ>0

”

eizντ

(2.2.4)
= −

Z ∞

−∞

dω′

2π

Z β

0

dτ eτ(izν−ω′)

| {z }

− e−βω′
+1

izν−ω′

I1
`
11′, ω′´ eβω

′

(A)

=

Z ∞

−∞

dω′

2π

“

eβω
′

+ 1
” I1 (11′, ω′)

izν − ω′

In (A) we made use of zνβ
π

being odd and thus eizνβ = −1.
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2.2 Green’s function and spectral function

Since we know the value ofG1 (11′, izν) in an infinite number of distinct points on the complex plane, we
can analytically continue (2.2.5) into the whole complex z-plane3:

G1

(
11′, z

)
=

∫ ∞

−∞

dω′

2π

A1 (11′, ω′)

z − ω′
(2.2.6)

with the spectral function

A1

(
11′, ω

)
=
(

1 + eβω
)

I1
(
11′, ω

)
. (2.2.7)

Again, we emphasize that this is the expression for the fermionic case. For bosonic particles, the sign
in (2.2.7) has to be swapped.

The integral is of Cauchy type. It defines an analytic function in the upper half-plane Im {z} > 0 and
the lower half-plane Im {z} < 0. On the real axis Im {z} = 0, there is a branch cut with singularities
at z = ω.

G1 can be computed with the Dirac identity

1

ω ± iε = ∓iπδ (ω) +
P
ω

(2.2.8)

with the principal value P. With the replacement z → ω ± iε and the implicit convention εց 0, the
following important equation shows

G1

(
11′, ω − iε

)
−G1

(
11′, ω + iε

)
= 2iIm

{
G1

(
11′, ω − iε

)}
(2.2.9)

= iA1

(
11′, ω

)
. (2.2.10)

It can be proven with a straightforward calculation, using (2.2.8) in (2.2.6):

G1

`
11′, ω ± iε

´ (2.2.6)
=

Z ∞

−∞

dω′

2π

A1 (11′, ω′)

ω ± iε− ω′

(2.2.8)
=

Z ∞

−∞

dω′

2π

»

PA1 (11′, ω′)

ω − ω′ ∓ iπδ
`
ω − ω′´A1

`
11′, ω′´

–

=

Z ∞

−∞

dω′

2π

»

PA1 (11′, ω′)

ω − ω′

–

| {z }

Re{G1(11′,ω±iε)}

∓1

2
A1

`
11′, ω

´

| {z }

Im{G1(11′,ω±iε)}

· i .

3Strictly spoken, the analytic continuation is well-defined only if the infinite number of points has a finite accumulation
point.
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2 Thermodynamic Green’s functions: Definitions and properties

Hence we can see, that the discontinuity of the imaginary part of the Green’s function at the real axis
is given by the spectral function or, the other way around, we can determine A1 (11′, ω) by examining
Im {G (11′, z)} at the real axis.

The commutator relation leads to

G>
1

(
11′, τ = 0

)
−G<

1

(
11′, τ = 0

)
= −δ11′ (2.2.11)

as well as the normalization constraint for the spectral function (sum rule)

1

π

∫ ∞

−∞
Im
{
G1

(
11′, ω′ − iε

)}
dω′ = 1 . (2.2.12)

Proving (2.2.11) is a straightforward utilization of the equations (2.1.15) to (2.1.17) and the
(anti-) commutator relation for fermions:

G>1
`
11′, τ = 0

´
−G<1

`
11′, τ = 0

´
= −

˙
a1a

+
1′

¸
−
˙
a+
1′a1

¸

= −
˘
a1, a

+
1′

¯

+

= −δ11′ .

With all the knowledge from this section – especially (2.2.10), (2.2.6) and (2.2.3), we can use the
method of thermodynamic Green’s functions to calculate physical properties of interacting quantum
systems according to the following scheme:

1. We calculate G1 (11′, izν). An appropriate perturbation theory for doing so will be given
later.

2. G1 (11′, z) is the analytic continuation of the Matsubara Green’s function into the com-
plex z-plane.

3. We compute the spectral function A1 (11′, ω) via

A1

(
11′, ω

)
= 2Im

{
G1

(
11′, ω − iε

)}
. (2.2.13)

4. From the spectral function we calculate the spectral density I1 (11′, ω):

I1
(
11′, ω

)
=
A1 (11′, ω)

1 + eβω
. (2.2.14)

5. The correlation functions are obtained by integration, for example through (2.2.3):

〈
a+

1′a1(τ)
〉

=

∫ ∞

−∞

dω

2π
I1
(
11′, ω

)
e−ωτ . (2.2.15)

6. Equations of state ( f (ω) = 1
eβω+1

):

e.g. n (β, µ) =
1

Ω

∑

1

〈
a+

1 a1

〉
=

∫
dω

2π
f (ω)A1 (11, ω) . (2.2.16)

7. Thermodynamic potential (contains all equilibrium properties):

e.g. J (T,Ω, µ) = −p (T, µ) Ω = −
∫ µ

−∞
dµ′ n

(
µ′, T

)
Ω . (2.2.17)
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2.3 Example: Ideal Fermi gas

2.3 Example: Thermodynamic Green’s function for the ideal Fermi

gas

In this section, we will discuss the example of an ideal Fermi gas. While the case of a Hamil-

tonian without any interaction contribution has already been addressed in earlier lectures on sta-
tistical physics, this example is very instructive for getting used to the Green’s functions formal-
ism.

With the Hamiltonian

H − µN =
∑

1

ǫ1a
+
1 a1 ǫ1 = E1 − µ =

~
2k2

1

2m
− µ , (2.3.1)

we have the statistical operator of the ideal Fermi gas

̺0 =
e−β(H−µN)

Tr
{
e−β(H−µN)

} =
e−β

P

1 ǫ1a+
1 a1

Tr
{

e−β
P

1 ǫ1a+
1 a1

} . (2.3.2)

Although some steps are obvious in this simple example, we will strictly follow the steps from
the previous section to explicitly show their application.

Step 1:
Since we did not introduce a perturbation theory for the thermodynamic Green’s function
up to now, we have to derive G0

1 (11′, izν) from fundamental principles.
From an earlier section of this lecture, we know that the τ -dependence of a(+) for an ideal
gas is given by

a1 (τ)
(1.2.5)

= a1e
−ǫ1τ a+

1 (τ)
(1.2.4)

= a+
1 eǫ1τ . (A)

Thus all correlation functions can be given:

G0<
1

`
11′, τ

´ (2.1.17)
=

˙
a+
1′(−τ)a1

¸ (A)
= e−ǫ1τf1δ11′

G0>
1

`
11′, τ

´ (2.1.15)
= −

˙
a1(τ)a

+
1′

¸ (A)
= −e−ǫ1τ (1 − f1) δ11′

G0
1

`
11′, τ

´ (2.1.7),(2.1.11)
= [Θ(−τ)f1 − Θ(τ) (1 − f1)] e

−ǫ1τδ11′ . (B)

Ε=0.1�Β

Ε=1�Β

Ε=10�Β

G1
0>
H11,ΤL

G1
0<
H11,ΤL

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

Τ�Β

G
10
H1

1
,Τ
L,

u
n
it

s
o
f
f 1

Green’s functionG0
1(11, τ) of the ideal Fermi gas according to (B) for single-particle

energies ǫ1 = 0.1β, β, 10β and −β ≤ τ ≤ β.
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2 Thermodynamic Green’s functions: Definitions and properties

The Fourier-transform of the Green’s-function (B) can be obtained via (2.1.22):

G0
1

`
11′, izν

´ (2.1.22)
=

Z β

0

dτ G1

`
11′, τ

´
eizντ

(B)
=

Z β

0

dτ

0

B
@ Θ(−τ)f1

| {z }

vanishes due to τ>0

−Θ(τ) (1 − f1)

1

C
A e−ǫ1τδ11′e

izντ

= − δ11′

izν − ǫ1

“

e(izν−ǫ1)β − 1
”

· (1 − f1) =
δ11′

izν − ǫ1
, (C)

where we made use of zνβ
π

being odd and thus eizνβ = −1.

Step 2:
The analytic continuation of the single-particle free propagator (C) is

G0
1(11′, z) =

δ11′

z − ǫ1
. (D)

Step 3:

Thus, the imaginary part of G0
1 results to

Im
˘
G0

1

`
11′, ω − iε

´¯ (D)
= Im


δ11′

(ω − ǫ1) − iε

ff

(2.2.8)
= Im



+iπδ (ω − ǫ1) +
�

�
�P

ω − ǫ1

ff

δ11′ = πδ (ω − ǫ1) δ11′ , (E)

where the principal value of the integral has been omitted since it only contributes to the real
part.
With (E), we find for the spectral function

A1

`
11′, ω

´ (2.2.13)
= 2πδ (ω − ǫ1) δ11′ . (F)

Step 4:
The spectral density is

I1
`
11′, ω

´ (2.2.14),(F)
=

2πδ (ω − ǫ1) δ11′

1 + eβω
. (G)

Step 5:
As an example for a correlation function we evaluate the single-particle occupation number

˙
a+
1′a1

¸ (2.2.15),(G)
=

Z ∞

−∞

dω

2π

2πδ (ω − ǫ1) δ11′

eβω + 1
= δ11′f1 (H)

Step 6:
With the correlation function (H) we have an equation of state via:

n (β, µ)
(H)
=

1

Ω

X

1

˙
a+
1 a1

¸
=

1

Ω

X

1

f1 . (I)
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The equation of state

n (β, µ)
(I)
=

1

Ω

∑

1

f1 = (2s+ 1)

∫
d3k

(2π)3
1

eβǫk + 1
, (2.3.3)

that we have found with our calculus is the well-known result from statistical mechanics for the ideal
Fermi gas.

As an important result from this example we have found an expression for the single-particle free
propagator:

G0
1

(
11′, izν

) (C)
=

δ11′

izν − ǫ1
. (2.3.4)

Further, the spectral function

A1

(
11′, ω

) (F)
= 2πδ (ω − ǫ1) δ11′ (2.3.5)

has a δ-like singularity at ω = ǫ1.
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3 Perturbation theory for thermodynamic Green’s
functions

3.1 Basic relations

Since we are examining many-particle systems with interaction, we need to construct a perturba-
tion theory for the Green’s function. Within this and the following sections we will concentrate on
fermions. The appropriate expressions for bosonic particles will only be given in some special cases.
However, the generalization of the calculus to arbitrary spin is straightforward.

With a decomposition of the entropy operator S of the form

S = S(0) + S(1) + S(2) , (3.1.1)

S(1) = β
∑

1

(E1 − µ) a+
1 a1 , (3.1.2)

S(2) = β
1

2

∑

12,1′2′
V
(
12, 1′2′

)
a+

1 a
+
2 a2′a1′ , (3.1.3)

that we already introduced with (1.1.9), we can perform an expansion with respect to the two-particle
contributions in the statistical operator

̺ = e−S = e−(S(0)+S(1)+S(2)) . (3.1.4)

While in the previous chapters, the parameter τ was of the dimension of the inverse energy and
0 ≤ τ ≤ β, we will now consider the more general case of a dimensionless parameter with 0 ≤ τ ≤ 1.

We have to consider the complete evolution as it was given with equation (2.1.4):

A(τ) = eSτA(0)e−Sτ . (3.1.5)

For constructing a perturbation theory for the Green’s function, we treat S(2) as the perturbation
and introduce an interaction picture by means of

A (τ) = UI (0, τ)AI (τ)UI (τ, 0) , (3.1.6)

where AI (τ) = e(S(0)+S(1))τA(0)e−(S(0)+S(1))τ = eS(1)τA(0)e−S(1)τ (3.1.7)

is the ’evolution’ of the unperturbed system. Using (1.2.4) and (1.2.5), AI (τ) can further be simplified,
since it only contains creation and annihilation operators. The ’evolution’ operator in interaction
representation has the form

U(τ, τ ′) = eS(1)τeS(τ−τ ′)e−S(1)τ ′
(3.1.8)

and can be decomposed with respect to S(2), compare eq. (1.2.2):

U(τ, τ ′) =
∞∑

n=0

(−1)n 1

n!

∫ τ

τ ′
dτ1 · · ·

∫ τ

τ ′
dτn T

[

S(2) (τ1) . . . S
(2) (τn)

]

(3.1.9)

35



3 Perturbation theory for thermodynamic Green’s functions

as τ -ordered product in terms of a Dyson series1.

In full analogy with (1.1.6) and (1.1.9), S(0) = lnZ(T,Ω, µ) cares for an appropriate normalization of
the statistical operator ̺.

Now, a perturbation theory for thermodynamic Green’s function can be constructed by expanding
any exponential function in

G1

(
1τ, 1′τ ′

)
= −Tr

{
̺T
[
a1(τ)a

+
1 (τ ′)

]}
with ̺ =

e−(S(1)+S(2))

Tr
{

e−(S(1)+S(2))
} (3.1.12)

in numerator and denominator with respect to S(2), that is contained in the statistical operator ̺ as
well as in every ’evolution’ operator via (3.1.6). A division by the denominator results in a power
series in S(2) with elements of a certain structure. Any of these elements can be illustrated by a
diagram, whereas the Fourier-representation is especially advantageous, since due to homogeneity
in space and ’time’, energy and momentum are conserved (as long as there is no external poten-
tial).

The expansion is very similar to time dependent perturbation theory from earlier lectures in
quantum mechanics2, where for example transition rates between two states m and n in first
and second order resulted to

w(1)
mn =

1

~2

˛
˛
˛
˛
˛
˛
˛

Z t

t0

dt′ 〈Ψm|H ′ |Ψn〉
| {z }

∼=Vmn

e
i
~

(En−Em)(t′−t0)
| {z }

∼=G0
1(mn)

˛
˛
˛
˛
˛
˛
˛

2

w(2)
mn =

1

~4

˛
˛
˛
˛
˛

X

k

Z t

t0

dt′
Z t′

t0

dt′′e−iωnkt
′

Vnk(t
′)e−iωkmt′′Vkm(t)

˛
˛
˛
˛
˛

2

When moving from coordinate space to momentum space via Fourier transformation, the
convolution integrals become simple products:

w(1)
mn ∝ 1

~2

˛
˛VmnG

0
1(mn)

˛
˛
2

w(2)
mn ∝ 1

~4

˛
˛
˛
˛
˛

X

k

VmkVknG
0
1(mk)G

0
1(kn)

˛
˛
˛
˛
˛

2

...

These products can be effectively evaluated using Feynman graphs.

1 Instead of the nested integral
Z τ

0

dτ1

Z τ1

0

dτ2

Z τ2

0

dτ3 . . .

Z τn−1

0

dτnA (τ1)B (τ2)C (τ3) . . . N (τn) , (3.1.10)

we consider the full integral

1

n!

Z τ

0

dτ1

Z τ

0

dτ2

Z τ

0

dτ3 . . .

Z τ

0

dτn T [A (τ1)B (τ2)C (τ3) . . . N (τn)] . (3.1.11)

The n! arrangements of the arguments τ1 . . . τn can be brought to the original order τ1 ≥ τ2 ≥ . . . ≥ τn by renaming
the integration variables while the time-ordering operator T [. . .] guarantees the correct order of the operator product.

2For further details in time-dependent perturbation theory, consider any standard textbook on Quantum Mechanics.
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3.2 Diagrammatic representation of the perturbative series

3.2 Diagrammatic representation of the perturbative

series

The perturbative expressions for the Green’s functions will become unhandy when considering higher
orders in the potential. That is why an effective and clear diagrammatic representation has been
developed. Using the fact that the convolution integrals in coordinate space become simple products
in Fourier space, we can represent the perturbation theory up to arbitrary orders by constructing
appropriate Feynman diagrams.

The

• free single-particle Green’s function

G
0
1

`
11

′
, izν

´

G0
1

(
11′, izν

) (2.3.4)
=

δ11′

izν − ǫ1
(3.2.1)

For homogeneous systems, G0
1

`
11′, izν

´
is diagonal in the single particle quantum numbers

11′: G0
1

`
11′, izν

´
∝ δ11′ . Thus, in the following we will often omit the second argument for

convenience and just write G0
1

`
1, izν

´
.

• and the interaction

V
`
~q, iωλ

´

V (~q) =
1

Ω

∫

d3r ei~q~rV (~r) (3.2.2)

are parts of this diagram technique.

The representation for the interaction V , we give here, is just a shorthand notation. In the
very general case we have to use V (12, 1′2′).
However, if there is no explicit dependence of the interaction on time (homogeneity in time),
energy conservation holds and the interaction takes the form V (12, 1′2′) δzν1

+zν2
,z

ν′

1
+z

ν′

2
, i.e.

it solely depends on ωλ = zν1 − zν′1 . If it is also local in time (instantaneous), the dependence
on ωλ is also removed and the interaction is non-dispersive.
It is important to mention, that ωλ – as the difference of two odd Matsubara frequencies in
the fermionic and two even frequencies in the bosonic case – corresponds to an even frequency.
Thus, the interaction has bosonic character. For spin conserving interaction – as we only
consider here – the expression reduces to

V
`
12, 1′2′´ = V

“
~k1
~k2,~k1′

~k2′

”

δσ1σ1′
δσ2σ2′

.

The (k-dependent) interaction in Fourier space depends on the interaction in coordinate
space via

V
“
~k1
~k2,~k1′

~k2′

”

= 〈k1′k2′ |V |k1k2〉

=

Z

d3~r1

Z

d3~r2

Z

d3~r1′

Z

d3~r2′ 〈k1′ |r1′〉 〈k2′ |r2′〉 〈r1′r2′ |V |r1r2〉 〈k2|r2〉 〈k1|r1〉
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3 Perturbation theory for thermodynamic Green’s functions

with 〈r|k〉 = Ω−1/2ei
~k~r:

=
1

Ω2

Z

d3~r1

Z

d3~r2

Z

d3~r1′

Z

d3~r2′ e−i
~k1′~r1′ e−i

~k2′~r2′V (~r1~r2, ~r1′~r2′) ei
~k2~r2ei

~k1~r1

=
1

Ω2

Z

d3~r1

Z

d3~r2

Z

d3~r1′

Z

d3~r2′ ei(
~k1~r1+~k2~r2−~k1′~r1′−~k2′~r2′)V (~r1~r2, ~r1′~r2′) ,

where k represents a wave-number and Ω the normalization volume. For local interactions,
V (~r1~r2, ~r1′~r2′) = V (~r1~r2) δ (~r1 − ~r1′) δ (~r2 − ~r2′) holds:

V
“
~k1
~k2,~k1′

~k2′

”

=
1

Ω2

Z

d3~r1

Z

d3~r2 ei([
~k1−~k1′ ]~r1+[~k2−~k2′ ]~r2)V (~r1~r2) .

If the potential only depends on the relative vector between the interacting particles (ho-
mogeneity in space): V (~r1~r2) = V (~r1 − ~r2), we can transform one integration to relative
coordinates and evaluate the other one:

V
“
~k1
~k2,~k1′

~k2′

”

=
1

Ω2

Z

d3 (~r1 − ~r2) ei[
~k1−~k1′ ](~r1−~r2)V (~r1 − ~r2)

Z

d3~r2 ei[
~k1−~k1′+~k2−~k2′ ]~r2

| {z }

Ω·δ~k1+~k2,~k
1′

+~k
2′

=
1

Ω

Z

d3 (~r1 − ~r2) ei[
~k1−~k1′ ](~r1−~r2)V (~r1 − ~r2) δ~k1+~k2,~k1′+

~k2′
.

Thus, we see, that due to the locality and hhomogeneityin space, momentum conservation is
ensured.
For the Coulomb potential, we find

V (~r1~r2, ~r1′~r2′) =
e1e2

4πε0 |~r1 − ~r2|
δ (~r1 − ~r1′) δ (~r2 − ~r2′) and

V
“
~k1
~k2,~k1′

~k2′

”

=
e1e2

Ωε0

˛
˛
˛~k1 − ~k1′

˛
˛
˛

2 δ~k1+~k2,~k1′+
~k2′

As a shorthand notation we will often use q =
˛
˛
˛~k1 − ~k1′

˛
˛
˛ and

V12(q) =
e1e2

Ωε0q2
.

Note, that when introducing a vertex function (see section 4.3), the particle’s charges as well

as the Kronecker symbols that ensure spin, momentum, and species conservation can also

be defined to be part of the vertex, see equation (4.3.3). Then, the interaction V (q) = 1
Ωε0q2

indeed looks like a particle (photon) propagator, compare (3.2.1).

38



3.2 Diagrammatic representation of the perturbative series

For developing correct and useful diagrams, several rules3 have to be applied. These cannot be derived
directly but checked on lowest orders.

1. Draw any connected diagrams which are not topologically equivalent. Otherwise equivalent
diagrams would erroneously be counted multiple times. In particular for G1 in n-th order in V :

• n interaction lines

• (2n+ 1) free-particle lines (otherwise we would not have a closed and connected diagram)

For getting an overview of the contributions of the three lowest orders to G1 we show the first

constituents of the decomposition of the so-called ’full propagator’ , that represents G1:

=
| {z }

0th order
in V

+ +
| {z }

1st order in V : Hartree- and Fock-type

+ + + +
| {z }

2nd order in V : products of Hartree- and Fock-diagrams

+ + + +

| {z }

2nd order in V , containing ’dressed’ internal propagators

+ +

| {z }

further diagrams of 2nd order in V

+ O
`
V 3´

A diagram like

does for example not appear, since it is topologically equivalent to the Fock diagram

.

Also diagrams of the form are not allowed because they are disconnected.

Furthermore the formalism can also be adapted to two- and more-particle Green’s functions.
In the two-particle case this would look like

Gladd
2 = + + + + + + O

`
V 3´ .

The two-particle Green’s function will be addressed in section 4.8, where bound states are

discussed.

3These rules are taken from [FW71]. For further details, we recommend consulting this monograph. A strict derivation
would need topological arguments which are usually not available.
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3 Perturbation theory for thermodynamic Green’s functions

2. Every line is assigned a direction and a Matsubara frequency as well as a wave number vector.
For any vertex (point where lines touch) conservation of energy (frequency) and momentum
(wave number vector) apply.

3. Every interaction line is given a factor of V (q, iωλ), see equation (3.2.2) and any free-particle
line is assigned a factor G0

1 (11′, izν), see equation (3.2.1)

4. A summation/integration over all n independent internal frequencies and wave number vectors
has to be performed.

5. For every frequency summation and wave number integration, we have to multiply with−Ω
β

(
1
2π

)3
.

The volume part of this factor is already known from the transition from discrete momentum
summation to integration in quantum mechanics (

∑

k . . . → Ω
∫

d3k
(2π)3

. . .). It compensates the

volume Ω in the interaction. The energy part preserves the dimension of 1
energy for the diagram,

since any propagator itself contributes the same unit.

Additionally, for ensuring the correct spin summation, we have to multiply with (2s+ 1) for
every degree of freedom in a spin coordinate s. For any closed fermion line a multiplication with
(−1) has to be introduced.

6. If a fermion propagator begins and ends at the same interaction line (as it is the case in the
Hartree and Fock diagrams above), a convergence factor of eizνη with the implicit convention
η ց 0 is introduced. As usual, the limit η ց 0 has to be performed after any other limit has
been computed.
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3.3 Evaluation of the frequency summation

3.3 Evaluation of the frequency summation

The direct summation over the Matsubara frequencies is only possible at high temperatures where
only few summands contribute. However, the sum can be transformed into an integration using the
Fermi function f(z) = 1

eβz+1
for fermionic particles and the Bose function g(z) = 1

eβz−1
in the

bosonic case, respectively.

We consider an arbitrary function h(z) which is analytic in the complex z-plane with exception of a
set of distinct poles {zh}. Especially at the Matsubara frequencies izµ and in their environment,
analyticity has to be ensured.

Then, the summation over the Matsubara frequencies can be simplified with

∑

zµ

h (izµ) = − β

2πi

∫

C1

dz f(z)h(z) (3.3.1)

with the integration contour C1 enclosing the Matsubara frequencies. The function f(z) is analytic
in the whole z-plane with the exception of singularities at the Matsubara frequencies izµ. For odd
frequencies (fermionic case), the Fermi function is an appropriate choice, while for even frequencies
(bosonic case), the Bose function is applicable.

For example for the single particle Green’s function h(z) = G0
1

(

~k, z
)

(3.2.1)
= 1

z−ǫk
, equation (3.3.1)

can be used to evaluate the frequency sum

lim
ηց0

∑

zµ

G0
1

(

~k, izµ

)

· eizµη = lim
ηց0

∑

zµ

eizµη

izµ − ǫk
=

{

βf (ǫk) for fermions

−βg (ǫk) for bosons .
(3.3.2)

Note, that the series expansion of the Fermi and Bose distribution is given in [Mah90],
section 3.1 Green’s Functions at Finite Temperatures - Introduction as

f(ǫk) =
1

eβǫk + 1
=

1

2
+

1

β

∞X

n=−∞

1

(2n+ 1) iπ
β

− ǫk

g(ǫk) =
1

eβǫk − 1
= −1

2
+

1

β

∞X

n=−∞

1

2n iπ
β

− ǫk
.

The additional summand ±1/2 becomes relevant in numerical evaluation of the Matsubara

sum and high-temperature expansions.
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3 Perturbation theory for thermodynamic Green’s functions

We will prove (3.3.1) in general and directly show (3.3.2) in the fermionic case. The algorithm
for doing so is a straightforward application of the residue theorem, that is well-known from
complex analysis:

1

2πi

Z

C
F (z)dz =

X

a

Resa F (z) (A)

for closed curves C with the residues at any pole a of F (z) within C. Using h(z) = ezη

z−x
and f(z) = 1

eβz+1
with x ∈ R, it is obvious that F (z) := h(z) · f(z) has singularities at

z = izν = iπν
β

with ν = ±1,±3, . . .:

f (izν) =
1

eiπν
|{z}

−1

+1
= ∞

with the residues − 1
β
· h (izν) and a simple pole at z = x, where h(z = x) = ∞. with the

residue f(x) · exη.
Thus, taking a look at the picture, equation (A) can be utilized as following:

X

zµ

h (izµ) = − β

2πi

Z

C1

dz f(z)h(z)

iπ
β

− iπ
β

C′

C2

C3

C1

z plane...

...
...

...

zh (pole of h(z))

The contour C1 can be expanded via C2 to C3 as long as h(z) remains analytic. Note, that the

antiparallel paths cancel each other. Since – according to Jordan’s lemma – contributions

of large arcs vanish, we are left with the integration along C′, that encloses the simple pole of

h(z) at z = x. The application of Jordan’s lemma is restricted to functions that vanish fast

enough with |z| → ∞.
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3.3 Evaluation of the frequency summation

In our example this is guaranteed by the convergence factor, that thus plays an essential role.
If we have to sum over a product of two or more propagators, the function h(z) vanishes faster
than ∝ 1/z for |z| → ∞ and the convergence factor is not necessary.

X

zµ

h (izµ) = − β

2πi

Z

C′

dz F (z)

The residue of g(z) at z = x is f(x) · exη, so that

− 1

2πi

Z

C′

dz F (z)
(A)
= f(x) · exη

(N.B. the direction of C′ is mathematically negative) and thus

X

zµ

h (izµ) = βf(x) · exη ηց0
= βf(x) .
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3 Perturbation theory for thermodynamic Green’s functions

3.4 Application of the diagram rules: Hartree-Fock

approximation

We will now apply the diagram rules to the two diagrams that are of lowest (first) order in V , the
so-called

Hartree diagram and the Fock diagram

Both diagrams consist of n = 1 interaction lines and contain 2n + 1 = 3 free-particle lines. They
are connected and not topologically equivalent (i.e. cannot be transformed into each other without
changing internal connections). Thus, these two diagrams fulfill the first rule from the previous
section.

Additionally, there is no third first-order diagram in V .

Applying the second rule is straightforward: Caring for conservation of energy and wave-number at any
vertex, we just add arbitrary Matsubara frequencies and wave number vectors (N.B. the interaction
has bosonic character, since it carries even frequencies in both cases):

~k, izν
~k, izν

0, 0

~k′, izµ

~k, izν
~k, izν

~k′, izµ

~k′ − ~k, izµ − izν

The diagram lines are now replaced with the interaction potential

V (~q, iωλ) =
1

Ω

∫

d3~r ei~q~r V (~r)

Coulomb
interaction,
compare
section 3.2=

e1e2
Ωε0q2

(3.4.1)

and the free-particle propagator

G0
1

(

~k, izν

)

=
1

izν − ǫ~k
ǫ~k =

~
2k2

2m
− µ (3.4.2)
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3.4 Application: Hartree-Fock approximation

with the appropriate coefficients (rule 3):

G0
1

“
~k, izν

”

G0
1

“
~k, izν

”

V (0, 0)

G0
1

“
~k′, izµ

”

G0
1

“
~k, izν

”

G0
1

“
~k, izν

”

G0
1

“
~k′, izµ

”

V
“
~k′ − ~k, izµ − izν

| {z }

iωλ

”

After combining the summations and integrations from rule 4 and the prefactors of rule 5, we
get

= − 1

β

(
1

2π

)3

(−(2s+ 1))1
∑

zµ

∫

d3~k′G0
1

(

~k, izν

)

·G0
1

(

~k′, izµ

)

·

·G0
1

(

~k, izν

)

· V (0, 0) (3.4.3)

= − 1

β

(
1

2π

)3

(−(2s+ 1))0
∑

zµ

∫

d3~k′G0
1

(

~k, izν

)

·G0
1

(

~k′, izµ

)

·

·G0
1

(

~k, izν

)

· V
(

~k′ − ~k, iωλ

)

. (3.4.4)

Since the Matsubara frequency summations would not converge, according to rule 6, we have to
introduce a convergence factor of eizνη in both cases:

= lim
ηց0
− 1

β

(
1

2π

)3

(−(2s+ 1))1
∑

zµ

∫

d3~k′G0
1

(

~k, izν

)

·G0
1

(

~k′, izµ

)

·

· eizµη ·G0
1

(

~k, izν

)

· V (0, 0) (3.4.5)

= lim
ηց0
− 1

β

(
1

2π

)3

(−(2s+ 1))1
∑

zµ

∫

d3~k′
1

izν − ǫk
· 1

izµ − ǫk′
·

· eizµη · 1

izν − ǫk
· V (0, 0) (3.4.6)

and

= lim
ηց0
− 1

β

(
1

2π

)3∑

zµ

∫

d3~k′G0
1

(

~k, izν

)

·G0
1

(

~k′, izµ

)

·

· eizµη ·G0
1

(

~k, izν

)

· V
(

~k′ − ~k, iωλ

)

(3.4.7)

= lim
ηց0
− 1

β

(
1

2π

)3∑

zµ

∫

d3~k′
1

izν − ǫk
· 1

izµ − ǫk′
·

· eizµη · 1

izν − ǫk
· V
(

~k′ − ~k, iωλ

)

(3.4.8)

45



3 Perturbation theory for thermodynamic Green’s functions

These expressions can further be simplified using (3.3.2), i.e. limηց0
∑

zµ
eizµη

izµ−ǫk
= βf (ǫk). Addition-

ally, we can omit the frequency coefficient in the interaction, since the instantaneous Coulomb poten-
tial only depends on the momentum, compare (3.2.2) and comments there.

Finally, we find the contributions of the

Hartree diagram

G0
1

“
~k, izν

”

G0
1

“
~k, izν

”

V (0, 0)

G0
1

“
~k′, izµ

”

=
1

izν − ǫk
· (2s+ 1)

∫
d3~k′

(2π)3
f (ǫk′)

︸ ︷︷ ︸

n

·V (0) · 1

izν − ǫk
(3.4.9)

and the

Fock diagram

G0
1

“
~k, izν

”

G0
1

“
~k, izν

”

G0
1

“
~k′, izµ

”

V
“
~k′ − ~k, izµ − izν

”

= − 1

izν − ǫk
·
∫

d3~k′

(2π)3
f (ǫk′) · V

(

~k′ − ~k
)

· 1

izν − ǫk
. (3.4.10)

Obviously, the Hartree diagram has an additional degree of freedom due to its closed particle loop. It
is removed by spin summation, that leads to the prefactor (2s+1). In the Fock diagram the particle’s
spin is fixed by the δ functions in the potential (δσ1σ1′ → δσ1σ2 after particle exchange) and δσ2σ2′ in
the Green’s function. Thus, the factor (2s+1) is missing there and the negative sign is preserved. For
the Coulomb potential V (q) ∝ 1/q2, the term V (0) in the Hartree expression is divergent. However,
in real systems (that are electrically neutral), we have to consider a mixture of different species c in
addition to the spin variable σ. The summation over positive and negatively charged species leads to
a mutual compensation and the Hartree diagram does not give any contribution. For a screened
interaction (see section 4.3), V s(0, 0) is not singular any longer.
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4 Evaluation of diagrams and partial summation

4.1 Mean field and quasi-particle concept

Due to their similar structure, the Hartree and Fock contributions can be combined in one diagram
class:

+

=
1

izν − ǫk
·
[∫

d3k′

(2π)3

(

(2s+ 1)V (0)− V
(

~k′ − ~k
))

f (ǫk′)

]

︸ ︷︷ ︸

≡ΣHF
1 (~k)

· 1

izν − ǫk
(4.1.1)

= G0
1

(

~k, izν

)

· ΣHF
1

(

~k
)

·G0
1

(

~k, izν

)

(4.1.2)

= ·




 +




 · (4.1.3)

In fact, the second diagram can be interpreted as an exchange contribution to the first one. Their
contribution leads to an energy shift, that can be seen as being caused by mutual particle ex-
change.

In the following, we will especially concentrate in the Coulomb interaction. Note, that we have
omitted the species summation. Considering the full expression including the species, the propagator
terms would carry a species conserving factor δcd and we would have to sum over all species:

∑

cd. As
already mentioned, for charge-neutral systems, with this summation, the Hartree-diagram vanishes,
since positive and negative charges compensate for each other.

Even for small ΣHF
1 , the perturbation expansion does not converge near the poles ω = ǫk of the

free propagator G0
1. This behavior is due to the insufficiency of the mathematical methods that

were applied until now. The real physical behavior does not show a discontinuity. Thus, higher
orders of diagrams have to be taken into account in a so-called ’partial summation’. That is, only
diagrams of a certain structure but up to arbitrary orders, are included. To exemplify this, we will
calculate the self-energy in Hartree-Fock-approximation , i.e. we will perform a partial summation
of self-energy contributions considering only diagrams of Hartree- and Fock-type up to arbitrary
orders.

This leads to the single-particle Green’s function in Hartree-Fock approximation. Collecting all or-
ders of Hartree and Fock diagrams together, we can formally write
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4 Evaluation of diagrams and partial summation

GHF
1

(

~k, izν

)

=
1

izν − ǫ~k − ΣHF
1

(

~k
) (4.1.4)

with ΣHF
1

(

~k
)

= + , (4.1.5)

which results from a straightforward application of the geometric series.

The proof for (4.1.4) is straightforward:

GHF
1 = +

0

@ +

1

A+

0

@ +

+ +

1

A+ . . .

= ·

2

41 +

0

@ +

1

A+

0

@ +

+ +

1

A+ . . .

3

5

= ·
»

1 +

0

@ +

1

A

| {z }

(ΣHF
1 ·G0

1)

+

0

@ +

1

A

2

| {z }

(ΣHF
1 ·G0

1)
2

+ . . .

–

= ·
»

1 +
“

ΣHF
1 ·G0

1

”

+
“

ΣHF
1 ·G0

1

”2

+ ...

–

.

Making use of the geometric series 1
1−x ≈ 1 + x+ x2 + . . ., we get

= · 1

1 − ΣHF
1 ·G0

1

= G0
1 ·

1

1 − ΣHF
1 ·G0

1

=
1

(G0
1)

−1 − ΣHF
1

=
1

izν − ǫ1 − ΣHF
1

.

From (4.1.1) it is obvious, that ΣHF
1

(

~k
)

is a real quantity, i.e. Im
{

ΣHF
1

(

~k
)}

= 0. Equation (4.1.4)

shows that if all orders of Hartree and Fock diagrams are taken into account, ΣHF
1 is an energy

shift in ǫ1, that moves the pole of G0
1 → GHF

1 . Although in general, Σ will have complex values, in
the case of the Hartree-Fock approximation, ΣHF

1 is real and just shifts the pole along the real
axis. Thus, the same terms as for ideal quantum gases arise. Simply the free-particle’s energy ǫ1 is
replaced by the Hartree-Fock energy ǫ1 + ΣHF

1 .
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4.1 Mean field and quasi-particle concept

Knowing GHF
1 , we can now perform the full thermodynamic program from section 2.2. Since

GHF
1

`
11′, izν

´
=

δ11′

izν − (ǫ1 + ΣHF
1 )

only has a pole of the order 1, the analytic continuation is as simple as

GHF
1

`
11′, z

´
=

δ11′

z − (ǫ1 + ΣHF
1 )

.

The corresponding spectral function is

AHF(1, ω) = lim
ηց0

i
“

GHF
1

`
11′, ω + iη

´
−GHF

1

`
11′, ω − iη

´”

= lim
ηց0

i

„
1

ω + iη − (ǫ1 + ΣHF
1 )

− 1

ω − iη − (ǫ1 + ΣHF
1 )

«

(2.2.8)
= i

„

P 1

ω − (ǫ1 + ΣHF
1 )

− iπδ
“

ω −
“

ǫ1 + ΣHF
1

””

−P 1

ω − (ǫ1 + ΣHF
1 )

− iπδ
“

ω −
“

ǫ1 + ΣHF
1

””«

= 2πδ
“

ω −
“

ǫ1 + ΣHF
1

””

.

Thus, in comparison with the non-interacting spectral function A(1, ω) = 2πδ (ω − ǫ1), the
Hartree-Fock spectral function AHF is shifted by ΣHF

1 but keeps its δ-character. In the
special case of ΣHF

1 = 0, the well-known result of a free particle holds.
With the spectral function we can now compute the occupation number

˙
a+
1 a1

¸
=

Z ∞

−∞

dω

2π
AHF(1, ω)f(ω)

= f
“

ǫ1 + ΣHF
1

”

and the density

n(β, µ) =
1

Ω

X

1

˙
a+
1 a1

¸

=
1

Ω

X

1

f
“

ǫ1 + ΣHF
1

”

as an example for any other thermodynamic variable. This result is consistent with a result

we would get when performing elementary perturbation theory in Hartree-Fock approxi-

mation, see section 1.4.

We see, that the divergences when expanding G1 near the pole, are cured. The solution is a simple shift
of the pole, which cannot be obtained by expansion at the unperturbed pole.
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4 Evaluation of diagrams and partial summation

4.2 Dyson equation and self-energy

The method of partial summation of special diagram classes can be generalized. When considering the
sum of all irreducible diagrams with one incoming and one outgoing vertex that don’t disintegrate if one
propagator of a free fermion is cut, we are facing a new diagram element:

Σ1 (1, izν) =

Σ = +

+ + + + + + +O
(
V 3
)
, (4.2.1)

which is called ’single-particle self-energy’.

The first two terms describe the Hartree-Fock contribution

ΣHF
1 (1, izν) = + . (4.2.2)

With the self-energy, we can define a ’full propagator’ , that iteratively includes contributions of

the self-energy Σ :

= + Σ + Σ Σ + . . . (4.2.3)

=
(

1 + Σ + Σ Σ + . . .
)

= · 1

1− Σ

= G0
1 (1, izν)

1

1− Σ1 (1, izν)G0
1 (1, izν)

=
1

G0
1 (1, izν)

−1 − Σ1 (1, izν)

⇒ G1 (1, izν) =
1

izν − ǫ1 − Σ1 (1, izν)
. (4.2.4)
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4.2 Dyson equation and self-energy

Relation (4.2.3) is the Dyson equation, we already introduced earlier, compare (1.2.2). It can also be
used to define the single-particle self-energy and calculate the single-particle full propagator in a self
consistent way:

= + Σ (4.2.5)

The self-energy just appears like an energy shift in the free particle propagator. In the previous section
we already saw, that when considering only diagrams of the Hartree and Fock type, the spectral
function is δ-shaped, but shifted along the frequency axis (compare figure 1). However, since Σ1 (1, izν)
is in general a dynamic (frequency-dependent) and complex variable, the δ-like spectral function of
the free-particle is becoming more complicated (figures 1 and 2):

G1 (1, izν) = =
1

izν − ǫ1 − Re {Σ1 (1, izν)} − iIm {Σ1 (1, izν)}
, (4.2.6)

A1 (1, ω)
(2.2.10)

= lim
εց0

2Im {G1 (1, ω − iε)}

= lim
εց0

2Im

{
1

ω − ǫ1 − Re {Σ1 (1, ω − iε)} − i (Im {Σ1 (1, ω − iε)} − ε)

}

= lim
εց0

2
Im {Σ1 (1, ω − iε)}

[ω − ǫ1 − Re {Σ1 (1, ω − iε)}]2 + [Im {Σ1 (1, ω − iε)} − ε]2
(4.2.7)

In general, the spectral function can be arbitrary complex. In the case of Im {Σ1(1, ω)} being indepen-
dent of the frequency ω, this is a Lorentzian profile with the width 2Im {Σ1 (1, ω)}.
If the width of the spectral profile and thus Im {Σ1(1, ω)} is negligibly small, the propagator (4.2.4)
takes the form

G1 (1, ω) =
1

ω − ǫ1 − Re {Σ1 (1, ω)} . (4.2.8)

Thus, we have an energy shift to a new quasi particle energy

Equ.
1 = ǫ1 + Re {Σ1 (1, ω)}|ω=E

qu.
1

. (4.2.9)

This quasi-particle energy justifies the introduction of a quasi-particle concept, where we renormalize
the particle mass to restore the original free particle’s propagator structure1:

G1 (1, ω) =
1

ω − ~2p2

2m∗

with
1

m∗
=

∂2

∂(~p)2
Equ.

1 . (4.2.10)

1See [KKER86], section 4.3.2. Self-Energy in V s-Approximation, for explicit results for the effective mass.
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4 Evaluation of diagrams and partial summation
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Figure 1: Spectral function at fixed momentum p in different approxi-
mations of the self-energy. While the spectral function of a free particle
and a particle with inclusion of the Hartree-Fock self-energy is δ-shaped,
the spectral function for complex (but ω-independent) self-energy has a
Lorentzian profile2.
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Figure 2: Spectral function for a plasma under solar core conditions (den-
sity n = 7 × 1025 cm−3 and temperature kBT = 1000 eV as a function of
momentum and energy. The black line on the bottom plane represents the

free dispersion relation ~ω = ǫp = ~
2p2

2m
− µ.3

2Figure with kind permission by C. Fortmann.
3For further details, see [For08], which is a very recent and very detailed work on the spectral function of Coulomb

systems. Additionally, we recommend [For09] for further studies.
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4.3 Screening equation and polarization function

4.3 Screening equation and polarization function

Until now, we have only considered self-energy corrections of the single-particle propagator G1. The
reason, why G1 factorizes and can be treated by a geometrical series, is the conservation of momen-
tum. In general, e.g. in an external potential, a matrix equation or integral equation has to be
solved.

We will now examine, whether the approach of introducing a self-energy Σ1(1, z) can also be general-
ized to the interaction

V
(
1, 2; 1′, 2′

)
= V

(
p1σ1c1izµ1 , p2σ2c2izµ2 ; p1′σ1′c1′izµ1′ , p2′σ2′c2′izµ2′

)
, (4.3.1)

where pi are the momenta of the incoming, pi′ those of the outgoing particles and σi and ci their
respective spin and species.

A diagram fragment containing interaction has a structure, which consists of three general ele-
ments:

• the particle propagators G1 (1, izν) and G1 (2, izν) with species c1 and c2, where G (1, z) = 1
z−ǫ1

respectively,

• the vertices Γ(11′) ∝ e1 and Γ(22′) ∝ e2 and

• the ’interaction propagator’ V (1, 2; 1′, 2′), that will be generalized to the photon as an interac-
tion particle in quantum electrodynamics, where it is a general 4-point and -frequency function.
Note, that the numbers 12, 1′2′ include all single-particle properties (momentum, spin, species,
energy/Matsubara frequency). However, as we already discussed in section 3.2, in our appli-
cations the dependence on frequency vanishes (non-dispersive interaction).

An instantaneous interaction does not depend on ωλ and thus is non-dispersive.

G(1) G(1′)

Γ(11′)

Γ(22′)

G(2) G(2′)

V (12, 1′2′)

p1 p1′ = p1 + q

p2 p2′ = p2 − q

We consider a spin- and species-conserving interaction, that is local (r1 = r1′ , r2 = r2′) and thus solely
depends on the relative distance |~r2 − ~r1| so that momentum is conserved. After Fourier transform,
with q = p1 − p1′ , we have

V
(
12, 1′2′

)
=
∑

q

e1δσ1σ1′ δc1c1′ δp1+q,p1′
︸ ︷︷ ︸

Γ(11′)

V (q) e2δσ2σ2′ δc2c2′ δp2−q,p2′
︸ ︷︷ ︸

Γ(22′)

, (4.3.2)
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4 Evaluation of diagrams and partial summation

see also the comments on the interaction in section 3.2. When omitting the spin-, species-, and
momentum-conserving δ functions, the Coulomb interaction in Fourier space has a very simple
structure:

Vab (q) = ΓaV (q)Γb = ea
1

Ωε0q2
eb . (4.3.3)

Equation (4.3.3) is the Fourier transform of the Coulomb potential in coordinate space:

Vab(r) =
eaeb
4πε0

· 1

r

Vab(q) = lim
ηց0

1

Ω

Z

d3~r Vab(r)e
−ηre−i~q~r = lim

ηց0

eaeb
Ωε0 (η2 + q2)

=
eaeb

Ωε0q2

The factor e−ηr had to be introduced to guarantee convergence of the integral.

Although for now, we treat the photon propagator and the vertices as a monolithic interaction Vab (q),
it is important to keep in mind that in general, the photon propagator is charge-neutral and the
vertices can be separated from the interaction.

Due to homogeneity of space, momentum is conserved along any propagator. This holds for the
classical particle propagators with momentum p as well as for the photon propagators, that carry the
transfer momentum q.

In full analogy with the Dyson equation, that relates the single-particle propagator to the self-energy,
we can construct the so-called screening equation, that defines an interaction-self-energy (effective
mass operator), which is called the polarization function Π (~q, izµ):

V s
ab (q, izµ) = Vab(q) +

∑

cd

Vac(q)Πcd (q, izµ)V s
db (q, izµ) (4.3.4)

= + Π + Π

Π

+ . . . = + Π (4.3.5)

The polarization function Π (~q, izµ) is the sum of all irreducible diagrams:

Π = + + + + + + . . . . (4.3.6)
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4.3 Screening equation and polarization function

N.B. the polarization function does not include diagrams, that would disintegrate if an interaction
line, that connects incoming and outgoing particles channels, is cut through. These diagrams, for
example

Q , (4.3.7)

are already considered in (4.3.5) with (4.3.6) and would be double-counted otherwise.

Since the frequency of the polarization function is either the difference of two even or two odd Mat-

subara frequencies, it corresponds to even Matsubara frequencies. Thus, it has bosonic charac-
ter.

While in coordinate space the screening equation would be a rather complicated matrix-integral equa-
tion, in momentum space it reduces to an algebraic matrix equation because the transferred momen-
tum q is conserved along an interaction path from incoming to outgoing particle channels and the
respective integrals collapse.

The matrix character of (4.3.4) results from the fact that interaction contributions with any parti-
cle species that fulfill the appropriate conservation laws are allowed, i.e. the polarization function
represents any of these species.

If the polarization function is diagonal in the particle species4,

Πcd (q, izµ) = Πcc (q, izµ) δcd , (4.3.8)

the screened interaction can be simplified to

V s
ab (q, izµ) =

Vab(q)

1−∑c Vcc(q)Πcc (q, izµ)
≡ Vab(q)

ε (q, izµ)
(4.3.9)

with the newly defined (longitudinal) dielectric function

ε (q, izµ) = 1−
∑

c

Vcc(q)Πcc (q, izµ) . (4.3.10)

4If this is not the case, i.e. Πcd contains off-diagonal elements, (4.3.4) has to solved as a matrix equation.
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4 Evaluation of diagrams and partial summation

Showing equation (4.3.9) is straightforward:

V sab (q, izµ) = Vab(q) +
X

cd

Vac(q)Πcd (q, izµ) δcdV
s
db (q, izµ)

= Vab(q) +
X

c

eaV (q)ecΠcc (q, izµ) ecV
s (q, izµ) eb ,

where we separated the vertices from the interaction. We can now reorder the factors and
rejoin them to

= Vab(q) +
X

c

Vcc(q)Πcc (q, izµ)V
s
ab (q, izµ) ,

V sab (q, izµ)

"

1 −
X

c

Vcc(q)Πcc (q, izµ)

#

= V (q)

V sab (q, izµ) =
Vab(q)

1 −Pc Vcc(q)Πcc (q, izµ)
.

We should keep in mind, that the interaction between two charges occurs via the scalar and vec-
tor potential as well. The division of the interaction into a scalar and a vectorial part is, however,
arbitrary and depending on the chosen gauge condition. Considering the vectorial part of the in-
teraction, we do not face scalar quantities any longer. Instead, V is a vector and the polarization
function Π a 3 × 3 matrix. However, if space is homogeneous, we can assume the interaction to
have a transversal component and the polarization function can be split up into a transversal part
Πt and a longitudinal part Πl. Then, for the transversal part, we find an analogous relation to
(4.3.9):

V s
t (q, izµ) =

Vt

1− VtΠt
. (4.3.11)

This equation explicitly demonstrates, that only the transversal part of the polarization function
contributes to the (transversal) photon propagator very similar to the self-energy.5 However, when
considering the propagation of light through a solid, the assumption of a homogeneous space does
not hold. Instead, it is periodic and the matrix form of the polarization function Π may be more
complicated. Then, such a closed algebraic solution will in general not be possible. Instead, (4.3.4)
has to be interpreted as a matrix equation for the respective spatial components of the polarization
function and the interaction.6

5An even more general discussion of the screening equation can for example be found in [Mah90], section 2.10.: Photon

Green’s Functions.
6For further details, see [Mah90], section 2.10.: Photon Green’s Functions, especially the comments on equations

(2.10.10) and following.
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4.3 Screening equation and polarization function

For showing (4.3.11), we separate the dependence on the direction of ~q in the polarization
function and in the interaction to decompose them into transversal and longitudinal part:

Πcd =

„

δcd −
qcqd
q2

«

Πt +
qcqd
q2

Πl V sac =

„

δac −
qaqc
q2

«

V st

Note, that the indices do not represent particle species here, but are space indices, e.g. qc is
a component of the vector ~q, etc.
The explicit dependence on |~q| has been omitted for convenience and as already stated, Vl
vanishes because the photons are transversal.
These expressions are inserted into (4.3.4), so that the sum is

X

cd

»„

δacδcd − δac
qcqd
q2

− δcd
qaqc
q2

+
qaqcqcqd

q4

«

VtΠt

+

„

δac
qcqd
q2

− qaqcqcqd
q4

«

VtΠl

–„

δdb −
qdqb
q2

«

V st

and after performing the sum over c and d, we find

=
X

d

„

δad −
qaqd
q2

«

VtΠt

„

δdb −
qdqb
q2

«

V st =

„

δab −
qaqb
q2

«

VtΠtV
s
t ,

so that for the full expression (4.3.4), we have

„

δab −
qaqb
q2

«

V st =

„

δab −
qaqb
q2

«

Vt +

„

δab −
qaqb
q2

«

VtΠtV
s
t .

This equation is only generally true if it holds for the scalar coefficients:

V st = Vt + VtΠtV
s
t .

This is (4.3.11).
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4 Evaluation of diagrams and partial summation

The spectral representation of the screened interaction is

V s
ab(q, z) = Vab(q)

[

1 +

∫
dω

π
Im
{
ε−1 (q, ω − iη)

}
· 1

z − ω

]

. (4.3.12)

The proof for (4.3.12) can be performed using Dirac’s identity (2.2.8) for the imaginary and
real part separately. For doing so, we analytically continue V sab(q, z) with z → Ω − iε in
(4.3.12):

V sab(q,Ω − iε) = Vab(q)

»

1 +

Z
dω

π
Im
˘
ε−1 (q, ω − iη)

¯
· 1

Ω − iε− ω

–

and apply (2.2.8), keeping in mind, that Vab(q) is real-valued:

Im {V sab(q,Ω − iε)} = Vab(q)

Z
dω

π
Im
˘
ε−1 (q, ω − iη)

¯
· (+πδ (Ω − ω))

= Vab(q)Im
˘
ε−1 (q,Ω − iη)

¯

Re {V sab(q,Ω − iε)} = Vab(q)

»

1 + P
Z

dω

π
Im
˘
ε−1 (q, ω − iη)

¯
· 1

Ω − ω

–

| {z }

Re{ε−1(q,Ω)}

, (A)

where in (A) the well-known Kramers-Kronig relation7, for the dielectric function has been
used.
Bringing real and imaginary part together, we have

V sab(q,Ω − iε) = Vab(q) · ε−1 (q,Ω − iε) ,

which is (4.3.9).

The screened interaction is especially important for systems with charged particles. Since the Coulomb

interaction V (q) ∼ 1/q2 is long-ranged, the perturbation series can diverge. This is avoided by the
screening effect, performing partial summations of the respective contributions.

7See for example [LPL84], § 82 The analytic properties of the function ε(ω).
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4.4 Random phase approximation (RPA)

4.4 Lowest order approximation for the polarization function:

RPA

We will now examine the lowest order summand of the polarization function Π (~q, izµ) in V for a single-
species system, e.g. electrons in a positive background. It leads to the free-particle approximation
that is called ’random phase approximation‘ (RPA):

ΠRPA (~q, izµ) = ~q,izµ ~q,izµ = (2s+ 1) Ω

∫
d3p

(2π)3
f (ǫp−q)− f (ǫp)

izµ + ǫp−q − ǫp
(4.4.1)

For proving (4.4.1), we will examine the following constellation:

ΠRPA (~q, izµ) =
~q, izµ ~q, izµ

~p, izλ

~p− ~q, izλ − izµ = izλ′

It is interesting to mention that, since izλ and izλ′ carry fermionic character (odd Matsubara

frequencies), izµ = izλ−izλ′ must be an even frequency and thus must have bosonic character.
Consequently, the possible quasi-particle that will be related to this ’bubble’ must be a boson.
According to the diagram rules from section 3.2 we get

ΠRPA (~q, izµ) = −Ω

β
(2s+ 1)(−1)

Z
d3p

(2π)3

X

zλ

1

izλ − ǫp
· 1

izλ − izµ − ǫp−q
.

After performing the partial fraction decomposition

1

izλ − ǫp
· 1

izλ − izµ − ǫp−q
=

1

−izµ − ǫp−q + ǫp

„
1

izλ − ǫp
− 1

izλ − izµ − ǫp−q

«

→
X

zλ

1

izλ − ǫp
· 1

izλ − izµ − ǫp−q
=

1

. . .

0

B
B
B
B
B
B
@

X

zλ

1

izλ − ǫp
| {z }

βf(ǫp)

−
X

zλ

1

izλ − izµ − ǫp−q
| {z }

βf(izµ+ǫp−q)

1

C
C
C
C
C
C
A

,

the second summand can be simplified using zµ = ±πµ
β

with even µ

f (izµ + ǫp−q) =
1

eβ(izµ+ǫp−q) + 1
=

1

e±iπµ
| {z }

=1

eβ(ǫp−q) + 1
= f (ǫp−q)

and thus, equation (4.4.1) can be shown by just inserting into ΠRPA (~q, izµ):

ΠRPA (~q, izµ) = (2s+ 1)Ω

Z
d3p

(2π)3
f (ǫp−q) − f (ǫp)

izµ + ǫp−q − ǫp
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4 Evaluation of diagrams and partial summation

Now, with the analytic continuation izµ → z = ~(ω + iη), η → 0, the dielectric function (compare
equation (4.3.9)) with the particle species index c in random phase approximation evaluates to

εRPA(q, ~ω) = 1−
∑

c

Vcc(q)Π
RPA
cc (q, ~(ω + i0)) (4.4.2)

= 1−
∑

c

Vcc(q) (2sc + 1) Ω

∫
d3p

(2π)3
f (ǫc,p−q)− f (ǫc,p)

~(ω + i0) + ǫc,p−q − ǫc,p
. (4.4.3)

The small perturbation +i0 has to be introduced to avoid the pole at ~ω = ǫc,p− ǫc,p−q. We will later
see that it leads to the Landau damping which results from the particles interacting with the plasma
waves. Of course, the selection of the ’retarded’ solution needs some further discussion, that is not
given here.

Since (4.4.3) is an important approximate result for the dielectric function ε(q, ~ω), its limits have been
intensively investigated and will be examined in the following three sections8.

The dielectric function in RPA-approximation includes the interaction in lowest order and is valid for
arbitrary degeneracy. For classical plasmas and low frequencies, it leads to Debye-screening, while for
strongly degenerate plasmas (T → 0), the static limit is called Thomas-Fermi-approximation.

In the long-wavelength limit (q → 0), the so-called plasmon-resonance appears, that results from the
collective excitation of the electrons in matter.

From the imaginary part of the dielectric function, we can derive the Landau damping.

8A more detailed discussion of the dielectric function in RPA approximation can be found in [AB84]. Additionally, we
recommend consulting the books [KKER86] and [Mah90] for further studies.
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4.4 Random phase approximation (RPA)

4.4.1 Static limit ω → 0 for a classical plasma: Debye
screening

In the static case ω → 0, the Debye screening can be derived in the classical limit:

lim
ω→0

εRPA(q, ~ω) = 1 +
κ2

q2
with κ2 =

∑

c

e2cnc

ε0kBT
(4.4.4)

Note, that κ = 1/rD is the inverse Debye screening length. The corresponding screened potential
is

lim
ω→0

V s(q, ω) =
V (q)

1 + κ2

q2

. (4.4.5)

The correspondence of (4.4.5) with the Debye potential V D(r) in coordinate space can be
shown via Fourier transformation:

V D(r) =
e1e2
4πε0

· e−κr

r

V D(q) =
1

Ω

Z

d3~r V D(r) e−i~q~r =
e1e2

Ωε0 (κ2 + q2)
=

e1e2
Ωε0q2

· 1

1 + κ2

q2

The screening parameter κ (inverse screening length) leads to a faster vanishing potential for

r → ∞ than the bare Coulomb potential. The screening effect in a plasma results from the

electron cloud, surrounding the ions and partially compensating for the effect of their charge

on remote charged particles.

We will show (4.4.4) in the classical approximation f (ǫc,p) = e−β(Ec,p−µc) that is only valid

for non-degeneracy and according low density, i.e. ncΛc
3

2sc+1
= eβµc ≪ 1. The thermal wavelength

of the particle species c is Λc =
q

2π~2

mckBT
.

f (ǫc,p−q) − f (ǫc,p) = e−β(Ec,p−q−µc) − e−β(Ec,p−µc)

= e−β(Ec,p−µc)

0

B
B
@

e−β

∆
z }| {

(Ec,p−q − Ec,p)
| {z }

≈1−β∆+O(∆2)

−1

1

C
C
A

≈ −f (ǫc,p)β∆.

Here we have implicitly presumed ~ → 0 (classical limit), hence ~q → 0 and thus ∆ → 0.
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4 Evaluation of diagrams and partial summation

Using this result and the Coulomb potential V (q) =
e2c

Ωε0q2
, we can write

lim
ω→0

εRPA(q, ~(ω + i0))

(4.4.3)
= lim

ω→0

2

6
6
6
4

1 −
X

c

e2c
Ωε0q2

(2sc + 1)

Z
Ω

(2π)3
d3p f (ǫc,p)

−β∆

~(ω + i0) + ∆
| {z }

→−β

3

7
7
7
5

= 1 +
1

q2

X

c

e2cβ

ε0
(2sc + 1)

Z
d3p

(2π)3
f (ǫc,p)

| {z }

nc
| {z }

κ2

.

Equation (4.4.5) is just (4.3.9) with the dielectric function ε from (4.4.4).

4.4.2 Long wavelength limit q → 0

In the long wavelength limit q → 0, a modification of the ω dependence results. The effective
photon mass parameter is the plasma frequency ωpl. This is the frequency of collective oscilla-
tions of the free electron density. The excitation quanta of these oscillations are called plasmons:

lim
q→0

εRPA(q, ~(ω + i0)) = 1−
ω2

pl

ω2
with ω2

pl =
∑

c

e2cnc

ε0mc
(4.4.6)

so that the screened potential reads

lim
q→0

V s(q, ω) =
V (q)

1− ω2
pl

ω2

. (4.4.7)

For ω ≈ ωpl, the real part of the dielectric function vanishes and the screened potential grows without
bounds. This is the plasmon resonance, where the free electrons of the matter are resonantly driven
to collective oscillations.
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4.4 Random phase approximation (RPA)

Since here we are only interested in the real part of the dielectric function, we can use the
Dirac identity (2.2.8) for simplifying (4.4.3) and then neglect the imaginary term:

lim
q→0

εRPA(q, ~(ω + i0))

= 1 − lim
q→0

X

c

e2c
ε0q2

(2sc + 1)P
Z

d3p

(2π)3
f (ǫc,p−q) − f (ǫc,p)

~ω + ǫc,p−q − ǫc,p
−((((((
iπδ(. . .) · . . .

= 1 + lim
q→0

X

c

e2c (2sc + 1)

ε0q2

„

P
Z

d3p

(2π)3
f (ǫc,p)

~ω + ǫc,p−q − ǫc,p

−P
Z

d3p

(2π)3
f (ǫc,p−q)

~ω + ǫc,p−q − ǫc,p

«

In the second integral we can substitute p′ := p − q, rename p := p′ and rejoin the two
integrals:

= 1 + lim
q→0

X

c

e2c (2sc + 1)

ε0q2
P
Z

d3p

(2π)3

„
f (ǫc,p)

~ω + ǫc,p−q − ǫc,p
− f (ǫc,p)

~ω + ǫc,p − ǫc,p+q

«

.

The term in brackets can be simplified as follows:

1

~ω

»
1

1 + 1
~ω

(ǫc,p−q − ǫc,p)
− 1

1 + 1
~ω

(ǫc,p − ǫc,p+q)

–

=
1

~ω

2

4
1

1 + ~

ω

“
(~p−~q)2
2mc

− ~p2

2mc

” − 1

1 + ~

ω

“
~p2

2mc
− (~p+~q)2

2mc

”

3

5

=
1

~ω

2

4
1

1 + ~

ωmc

“

−~p~q + ~q2

2

” − 1

1 + ~

ωmc

“

− ~q2

2
− ~p~q

”

3

5 .

Since we are examining the limit q → 0, we can use 1
1−x = 1 + x+ x2 + O(x3)

≈ 1

~ω

"

1 − ~

ωmc

„

−~p~q +
~q 2

2

«

+
~

2

(ωmc)
2

„

−~p~q +
~q 2

2

«2

−1 +
~

ωmc

„

−~q
2

2
− ~p~q

«

− ~
2

(ωmc)
2

„

−~q
2

2
− ~p~q

«2

+ . . .

#

= − 1

~ω

»
~q2

ωmc
+ O

`
q3
´
–

.

Now we can resume our computation with

lim
q→0

εRPA(q, ~(ω + i0)) = 1 − lim
q→0

X

c

e2c
ε0q2

1

~ω

~q2

ωmc
(2sc + 1)P

Z
d3p

(2π)3
f (ǫc,p)

| {z }

nc

= 1 − 1

ω2

X

c

e2cnc
ε0mc

| {z }

ω2
pl
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4 Evaluation of diagrams and partial summation

4.4.3 Effect of the infinitesimal imaginary part: Landau
damping

In (4.4.3) an infinitely small imaginary part had to be introduced for handling the discontinuity
due to a pole at ~ω = ǫc,p − ǫc,p−q. An analysis of its impact leads to a damping of the form

Im
{
εRPA(q, ~(ω + i0))

}
=
∑

c

e2cm
2
c (2sc + 1)

4πε0β~4q3
ln

∣
∣
∣
∣
∣
∣
∣

1 + e
−β

„

~
2

2mc

“

mcω
~q

− q
2

”2
−µc

«

1 + e
−β

„

~2

2mc

“

mcω
~q

+ q
2

”2
−µc

«

∣
∣
∣
∣
∣
∣
∣

. (4.4.8)

Again we start our examination with the dielectric function εRPA(q, ~(ω + i0)) from (4.4.3)

and the Coulomb potential V (q) =
e2c
ε0q2

, but now we are interested in the imaginary part

and thus take the second summand from the Dirac identity (2.2.8):

Im
n

εRPA(q, ~(ω + i0))
o

= −
X

c

(−π)
e2c
ε0q2

(2sc + 1)

Z
d3p

(2π)3
[f (ǫc,p−q) − f (ǫc,p)] δ (~ω + ǫc,p−q − ǫc,p)

= −
X

c

(−π)
e2c
ε0q2

(2sc + 1)

»Z
d3p

(2π)3
f (ǫc,p−q) δ (~ω + ǫc,p−q − ǫc,p)

−
Z

d3p

(2π)3
f (ǫc,p) δ (~ω + ǫc,p−q − ǫc,p)

–

.

In the first integral we can substitute p′ := p− q and rename p := p′:

= −
X

c

(−π)
e2c
ε0q2

(2sc + 1)

Z
d3p

(2π)3
f (ǫc,p) [δ (~ω + ǫc,p − ǫc,p+q)

−δ (~ω + ǫc,p−q − ǫc,p)] .

Using δ(αx) = 1
|α|δ(x), ǫc,p = ~

2~p2

2mc
and ǫc,p±q = ~

2(~p±~q)2
2mc

=
~
2(~p2±2pq cos θ+~q2)

2mc
, we can

restructure the arguments of the δ functions

δ (~ω + ǫc,p−q − ǫc,p) =
mc

~2pq
δ

„

cos θ − mcω

~pq
− q

2p

«

≡ mc

~2pq
δ1 ,

as well as

δ (~ω + ǫc,p − ǫc,p+q) =
mc

~2pq
δ

„

cos θ − mcω

~pq
+

q

2p

«

≡ mc

~2pq
δ2.
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4.4 Random phase approximation (RPA)

After transforming to spherical coordinates, we get

Im
n

εRPA(q, ~(ω + i0))
o

= −
X

c

(−π)
e2c
ε0q2

2π
(2sc + 1)

(2π)3

Z ∞

0

dp

Z 1

−1

d cos θ p2f (ǫc,p)
mc

~2pq
[δ2 − δ1] .

Since cos θ ∈ [−1; 1], the two δ functions only contribute if

˛
˛
˛
˛

mcω

~pq
± q

2p

˛
˛
˛
˛
≤ 1 ⇔

˛
˛
˛
˛

mcω

~q
± q

2

˛
˛
˛
˛
≤ p

holds, respectively. This just changes the limits in the two p-integrations:

Im {ε(q, ~(ω + i0))}

= −
X

c

(−2π2)
e2cmc

ε0~2q3
(2sc + 1)

(2π)3

"Z ∞
˛
˛
˛

mcω
~q

− q
2

˛
˛
˛

dp pf (ǫc,p) −
Z ∞

˛
˛
˛

mcω
~q

+ q
2

˛
˛
˛

dp pf (ǫc,p)

#

.

We can now collect the integrals, insert the Fermi distribution and perform the integration:

= −
X

c

(−2π2)
e2cmc

ε0~2q3
(2sc + 1)

(2π)3

Z
˛
˛
˛

mcω
~q

+ q
2

˛
˛
˛

˛
˛
˛

mcω
~q

− q
2

˛
˛
˛

dp
p

1 + e
β

„
~2p2

2mc
−µc

«

= −
X

c

(−2π2)
e2cmc

ε0~2q3
(2sc + 1)

(2π)3

„

− mc

~2β

«"

ln

˛
˛
˛
˛
˛
1 + e

−β
„

~
2p2

2mc
−µc

«˛
˛
˛
˛
˛

#
˛
˛
˛

mcω
~q

+ q
2

˛
˛
˛

˛
˛
˛

mcω
~q

− q
2

˛
˛
˛

= −
X

c

e2cm
2
c

4πε0β~4q3
(2sc + 1) (−1) ln

˛
˛
˛
˛
˛
˛
˛

1 + e
−β

„

~
2

2mc

“
mcω

~q
− q

2

”2−µc

«

1 + e
−β

„

~2

2mc

“
mcω

~q
+ q

2

”2−µc

«

˛
˛
˛
˛
˛
˛
˛

.

This is (4.4.8).
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4 Evaluation of diagrams and partial summation

In the limit of vanishing degeneracy and with only one particle species, eq. (4.4.8) leads to the classi-
cal Landau damping that results from the energy-transfer from the longitudinal plasma-mode to the
electrons. In contrast to many other coupled-oscillator problems, this coupling is phase-matching, i.e.
there is no phase-shift between the plasma mode and the electronic movement.

Im
{
εRPA(q, ~(ω + i0))

}∣
∣
eβµ≪1

=
mω2

pl

~q3

√
2πm

kBT
· e

−β
2

„

mω2

q2
− ~

2q2

4m

«

sinh

(
β~ω

2

)

. (4.4.9)

Vanishing degeneracy means low densities and thus 1 ≫ eβµc =
ncΛ3

c

2sc+1
. In this case, after

converting the ln(. . .) of a quotient into a difference of logarithms, we can expand the ln(. . .)

functions in (4.4.8) using ln (1 + x) = x− x2

2
+ x3

3
− . . . = x+ O

`
x2
´

for x≪ 1

Im
n

εRPA(q, ~(ω + i0))
o˛
˛
˛
eβµc≪1

=
X

c

e2cm
2
c (2sc + 1)

4πε0β~4q3
eβµc

|{z}

ncΛ3
c

2sc+1

·e−
β
2

„
mcω2

q2 − ~
2q2

4mc

«
h

e
β~ω
2 − e−

β~ω
2

i

| {z }

2·sinh( β~ω
2 )

=
X

c

e2cm
2
cncΛ

3
c

2πε0β~4q3
· e−

β
2

„
mcω2

q2 − ~
2q2

4mc

«

sinh

„
β~ω

2

«

Now we can insert the thermal wavelength Λc =
q

2π~2

mckBT
and β = 1

kBT

=
X

c

e2cmcnc
ε0~q3

r
2π

mckBT
· e−

β
2

„
mcω2

q2 − ~
2q2

4mc

«

sinh

„
β~ω

2

«

.

We can insert ωpl from (4.4.6)

=
X

c

mc

~q3
ω2
c,pl

r
2πmc

kBT
· e−

β
2

„
mcω2

q2 − ~
2q2

4mc

«

sinh

„
β~ω

2

«

.

In the case of only one particle species, we can omit the species index c:

Im
n

εRPA(q, ~(ω + i0))
o˛
˛
˛
eβµ≪1

=
m

~q3
ω2

pl

r
2πm

kBT
· e−

β
2

„

mω2

q2 − ~
2q2

4m

«

sinh

„
β~ω

2

«

.

It is important to mention, that the imaginary part of the dielectric function in RPA-approximation
vanishes for low frequencies and long wavelengths:

lim
ω→0

Im
{
εRPA (q, ~ω + iη)

}
= 0 (4.4.10)

lim
q→0

Im
{
εRPA (q, ~ω + iη)

}
→ 0 . (4.4.11)

Especially in the long-wavelength limit q → 0, the plasmon resonance is not attenuated.
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4.4 Random phase approximation (RPA)

Real part (left) and imaginary part (right) of the dielectric function in RPA-
approximation as a function of ω

ωpl
and q

κ
for solar core conditions (T = 100 Ryd,

n = 8.9 a−3
B ). Obviously, there is a significant discontinuity at εRPA (q → 0, ω → 0).

Additionally, we can see, that at ω ≈ ωpl, the real part of the dielectric function van-
ishes, while for certain parameter sets, the imaginary part becomes arbitrary small.
Thus, undamped plasmon excitation is possible.
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4 Evaluation of diagrams and partial summation

4.5 Vertex equation

In equation (4.3.6), we already saw a contribution of the type . Such graphs have not been
under examination until now. Obviously, when taking into account higher orders of these graphs,

diagram fragments of the form , ,. . . appear. These so-called vertex corrections can be

collected in a new diagram element Γ = , that can be defined through the self-consistent vertex
equation

Γ1

(

1izν1 , 1
′izν′

1
; q, izµ

)

= Γ0
1 +KG1G1Γ1 (4.5.1)

⇔ = + K , (4.5.2)

where

Γ0
1

(

1izν1 , 1
′izν′

1
; q, izµ

)

= 1
q, izµ

1’ = e1 δp1+q,p1′ δzν1+zµ,zν1′
δc1,c1′ δσ1σ1′ (4.5.3)

is the single-particle vertex in lowest order. Note, that besides the quantum number conserving δ-
functions, it only contains a constant factor. Thus, when considering the δ-functions separately, we
can also write

Γ0
1

(

1izν1 , 1
′izν′

1
; q, izµ

)

= Γ0
1 δp1+q,p1′ δzν1+zµ,zν1′

δc1,c1′ δσ1σ1′ , (4.5.4)

where the symbol Γ0
1 denotes the particle’s charge.

Again the particle indices 1, 1′ are used as a shorthand for respective single-particle properties, such as
momentum p, species c, and spin σ. The effective interactionK (11′, 22′, izλ) represents any irreducible
particle-hole scattering contribution9.

The integral form of the vertex equation is

Γ1

(

1izν1 , 1
′izν′

1
; q, izµ

)

= Γ0
1

(

1izν1 , 1
′izν′

1
; q, izµ

)

+
∑

22′
33′

K
(
11′, 22′, izλ

)
G1 (23, izν + izλ)×

×G1

(
2′3′, izν′ − izλ

)
Γ1

(
3izν + izλ, 3

′izν′ − izλ; q, izµ
)
. (4.5.5)

9In very general, having four external momenta, K will carry up to three frequency arguments.
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4.5 Vertex equation

In a very simple approach, we could replace K ≈ V and G ≈ G0. Then, the vertex equation has a
similar structure as the screening equation (4.3.5). However, as long as the interaction is not separable,
the vertex equation does not factorize. Thus, it cannot be solved directly as it was the case for the
screening equation, where we could find an algebraic expression for the screened potential with the
dielectric function ε.

The vertex-graphs, resulting from this approximation have a significant form:

, , , . . . .

They are called ’rainbow diagrams’. In quantum electrodynamics (QED), the contribution of those ver-
tex corrections leads to a charge renormalization, i.e. the vertex charge is replaced e→ ẽ.
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4 Evaluation of diagrams and partial summation

4.6 Consistent approximation to the single-particle

self-energy

Having defined the screened interaction in section 4.3, we can introduce the screened single-particle
self-energy as a native generalization of the Hartree-Fock self-energy (see section 4.1):

ΣMW
1 (1, izν) = = + + + . . .

= δ11′
∑

22′
q,izλ

Γ0
1 (1izν , 2izν + izλ; q, izλ)G0

1

(
22′, izν + izλ

)
×

× Γ0
1

(
2′izν + izλ, 1

′izν ;−q,−izλ
)
V s (q, izν) . (4.6.1)

is the so-called Montroll-Ward approximation, that – due to homogeneity of space and time (energy
and momentum conservation) – is diagonal in the single-particle quantum numbers 1 = {p c σ}. Thus,
1′ = 1 and we could omit one argument of the self-energy. This diagram describes the interaction
of a particle with the Debye cloud. It has already been under intense examination for plasmas
and semiconductors. It is possible to show, that in the nondegenerate limit

〈
ΣMW

1

〉
= − e2κ

8πε
This

momentum-independent shift can be transformed into a shift of the the chemical potential µ. This is
the Debye approximation.10

However, it can be shown, that vertex corrections are of the same order of magnitude as self-energy
contributions. The fundamental relation between the self-energy Σ1 and the vertex function Γ1 is the
Ward-Takahashi identity, that states, that the vertex function is given by11

Γ1

(

1izν1 , 1
′izν′

1
; p, izµ

)

=

[

1− ∂Σ1 (p, z)

∂z

]

z=izµ

e1 δp1+q,p1′ δzν1+zµ,zν1′
δc1,c1′ δσ1σ1′ . (4.6.2)

It is only valid in the limit of small transfer momentum q → 0. N.B. (4.6.2) is the Ward-Takahashi

identity for scalar vertices Γ. For vectorial vertices, an analogous relation can be derived, but will not
be discussed here, since during this lecture we will only need the scalar equation.

Since from (4.6.2), we see that vertex corrections and self-energy contributions are of the same impor-
tance, a consistent single-particle self-energy, that contains contributions beyond RPA is

Σ1 (1, izν) = = + + + . . . (4.6.3)

with the screened interaction (wiggly line) given by the polarization function

Π (q, izµ) = = + + + . . . (4.6.4)

The evaluation of these diagrams leads to an infinite hierarchy of equations, that has to be truncated
on a certain level for practical calculations. A very often used truncation rule is the so-called GW -
approximation, where the vertex function is neglected and only the particle propagators and their

10Detailed calculations can be found in the monograph [KKER86], section 4.3 Self-Energy in V s-Approximation.
11We will not make any further digression about this important relation, but due to its importance, we strongly rec-

ommend further literature, for example [Mah90], section 7.1.D: Ward identities, where a proof for (4.6.2) can be
found.

70



4.6 Single-particle self-energy: consistent approximation

respective self-energies are considered. The additional simplification that the polarization function
is given in random phase approximation Π = ΠRPA, leads to the GW (0) approximation.12 These
assumptions on the vertex function and the polarization function lead to analytically solvable equa-
tions, however, they violate the Ward-Takahashi-identity. The inclusion of the vertex function
in lowest order of the screened potential would be a further improvement to the GW approxima-
tion - the GWΓ approximation. The further consistent treatment leads to the so-called Φ-derivable
approximations.13

12For exemplary calculations and further references, see [FRW07].
13See for example [Bay62] for a very fundamental work on Φ-derivable approximations.
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4 Evaluation of diagrams and partial summation

4.7 Excursus: Dielectric function, index of refraction, absorption

coefficient, and dynamic conductivity

The Green’s functions technique can be used as a tool to investigate transport and optical properties
of many-body-systems, in particular of plasmas. To relate optical observables such as the absorption
coefficient α(ω) or the emission coefficient j(ω) to the quantities already introduced in this lecture,
we consider the propagation of a monochromatic plane wave in an absorbing medium. Note, that in
thermal equilibrium, α(ω) and j(ω) are linked by Kirchhoff’s law. Thus, it is sufficient to study
one of these quantities. Considering the long-wavelength limit q → 0, we already dropped the explicit
dependence of the quantities on the wave-number q. We start from Maxwell’s equations for the
magnetic field ~H and the electric field ~E in frequency space

iω µ(ω) ~H = c rot ~E , (4.7.1)

iω ε(ω) ~E = −c rot ~H , (4.7.2)

allowing for a frequency-dependent dielectric function ε(ω) and magnetic susceptibility µ(ω).

Eliminating the magnetic field results in the wave equation for ~E,

∆ ~E + ε(ω)µ(ω)
ω2

c2
~E = 0 . (4.7.3)

After applying Fourier-transformation for a homogeneous system, we have

(

k2 − ε(ω)µ(ω)
ω2

c2

)

~E = 0 , (4.7.4)

or

k2 = ε(ω)µ(ω)
ω2

c2
. (4.7.5)

Assuming, that we have an unmagnetized plasma, µ = 1, this equation leads to a complex wave
vector if ε(ω) itself is complex or ε(ω) < 0. For such a situation, we consider a complex representation
~k = Re~k + i Im~k, implying a split of the plane wave

ei~k·~r = eiRe~k·~r · e−Im~k·~r (4.7.6)

into a phase factor and a part describing the damping of the wave by the medium. Note, that this effect
was already studied in elementary electrodynamics in the context of propagation of electromagnetic
waves in conducting media (telegrapher’s equations).

Generalizing the convention from electrodynamics, we define

k =
(

n(ω) + i
c

2ω
α(ω)

) ω

c
=
√

ε(ω)
ω

c
, (4.7.7)

where n(ω) is the index of refraction and α(ω) the absorption coefficient. Both quantities can be
expressed in terms of Re ε(ω) and Im ε(ω):
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4.7 Excursus: Dielectric function

α(ω) =
ω

cn(ω)
Im ε(ω) (4.7.8)

n(ω) =
1√
2

√

Re ε(ω) + |ε(ω)| . (4.7.9)

Equations (4.7.8) and (4.7.9) can be shown by simple algebraic conversion. Dropping the
frequency parameter ω for convenience, from (4.7.7), we have

“

n+ i
c

2ω
α
”2

= ε = Re ε+ i Im ε

n2 − α2c2

4ω2
+ i

c nα

ω
= Re ε+ i Im ε .

Comparing the real and imaginary part of the left and right hand side, we find (4.7.8)

α =
ω

cn
Im ε

and

n2 − (Im ε)2

4n2
= Re ε

n4 − n2 Re ε− (Im ε)2

4
= 0

n2 =
1

2
Re ε+

s

(Re ε)2 + (Im ε)2

4

⇒ n =
1√
2

p

Re ε+ |ε| ,

which is (4.7.9).

Thus, the knowledge of the dielectric function ε(ω) = limq→0 ε(q, ω) is essential to describe optical
observables like α(ω) or n(ω).

In addition, the dynamic (frequency-dependent) conductivity σ(ω), is related to the dielectric function
via the Drude relation:

σ(ω) = iωε0 (ε(ω)− 1) . (4.7.10)

Its low-frequency limit, i.e. the static conductivity σ0 = limω→0 σ(ω) is also an important observable,
that is experimentally accessible.

Note, that a first-principle treatment of photons propagating in a medium by a Green’s functions
theory should be done by introducing a photon propagator into the theory in addition to the Coulomb

interaction. This can be done starting from quantum electrodynamics (QED). For a classical plasma
(kBT ≪ mc2), a treatment within traditional quantum mechanics is possible, starting from the
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4 Evaluation of diagrams and partial summation

nonrelativistic Hamiltonian

H =
∑

a

1

2ma

∫

d3~r ψ+
a (~r, t)

[
~

i
∇− ea

c
~A (~r, t)

]2

ψa (~r, t)

+
1

8π

∫

d3~r
[

~E2 (~r, t) + ~B2 (~r, t)
]

+
1

2

∑

a,b

eaeb

∫

d3~r

∫

d3~r ′ ψ+
a (~r, t)ψ+

b

(
~r ′, t

) 1

|~r − ~r ′|ψb

(
~r ′, t

)
ψa (~r, t) , (4.7.11)

where a and b label the species, ~A is the vector potential and the expression is given in Coulomb

gauge ∇ ~A = 0. In this treatment, the photon is connected to the Green’s function of the vector
potential14:

D̂µν

(

~k, τ
)

=
1

c

〈

T

[

Aµ

(

~k, τ
)

Aν

(

−~k, 0
)]〉

(4.7.12)

and can be related to the transverse current-current correlation function due to the minimal coupling
between the particle current and the vector potential ~A. Thus, a perturbation expansion of the
Coulomb (longitudinal) and radiation (transversal) part is possible. Finally, the same relations as
(4.7.8), (4.7.9) are obtained in the long-wavelength limit q → 0.

14See [Mah90], section 3.2.: Matsubara Green’s Functions for details.

74



4.8 Bound states

4.8 Bound states

Because for a bound state at least two particles are needed, a closer look on two- and more-particle
Green’s functions has to be taken. For simplicity, we will only refer to the propagation of two
particles and thus a correlation function of the form a+

1 a
+
2 a2′a1′ has to be examined, compare equation

(2.1.6).

For non-interacting distinguishable particles (zeroth order in V and different particle species or spin,
etc.), the two-particle Green’s function results to

G0
2

(
12, 1′2′, iωλ

)
=

k2, iωλ − izν

k1, izν =
1− f (ǫ1)− f (ǫ2)

iωλ − ǫ1 − ǫ2
δ11′δ22′ . (4.8.1)

with the Bose Matsubara frequency ωλ.

The initial expression for G0
2(12, iωλ) can be found by applying the rules from section 3.2.

Afterwards a partial fraction decomposition has to be performed to derive (4.8.1):

G0
2(12, 1′2′, iωλ) = − 1

β

X

zν

1

izν − ǫ1

1

iωλ − izν − ǫ2
δ11′δ22′

= − 1

iωλ − ǫ1 − ǫ2
·

0

B
B
B
B
B
@

1

β

X

zν

1

izν − ǫ1
| {z }

f(ǫ1)

+
1

β

X

zν

1

iωλ − izν − ǫ2
| {z }

−f(iωλ−ǫ2)

1

C
C
C
C
C
A

δ11′δ22′

=
f (iωλ − ǫ2) − f (ǫ1)

iωλ − ǫ1 − ǫ2

Because of ωλ = πλ
β

with λ = 0,±2, . . . and thus eiβωλ = 1, we are able to write f (iωλ − ǫ2) =
1

1+e−βǫ2
= eβǫ2+1−1

eβǫ2+1
= 1 − f (ǫ2)

G0
2(12, 1′2′, iωλ) =

1 − f (ǫ1) − f (ǫ2)

iωλ − ǫ1 − ǫ2
δ11′δ22′ .

If the two particles are indistinguishable, i.e. are of the same species, spin, etc., the respective exchange
contribution has to be included in (4.8.1). For fermionic particles (antisymmetric wave function), the
two-particle propagator takes the form

G0
2

(
12, 1′2′, iωλ

)
= − =

1− f (ǫ1)− f (ǫ2)

iωλ − ǫ1 − ǫ2
(δ11′δ22′ − δ12′δ21′) , (4.8.2)

while for bosonic particles (symmetric wavefunction), the negative sign is replaced by a positive one
and the Fermi functions by Bose distributions. In the following, we will only concentrate on Fermi

particles and thus use the two-particle propagator from (4.8.2).

Neglecting the Fermi functions, (4.8.2) describes the propagation of two non-interacting particles in
the low-density limit: For n→ 0, f(ǫ)≪ 1 holds and G0

2 formally has the same structure as G0
1. Thus,

the bound state can be treated as a new particle species in a chemical picture.
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4 Evaluation of diagrams and partial summation

To include interaction, we apply the diagram representation of perturbation theory. Since we want
to solve the two-particle problem, it is sufficient to examine such diagrams that only contain two
fermionic propagators.

G2

(
12, 1′2′, iωλ

)
=

+

︸ ︷︷ ︸

1st Born

approx.

+ +

︸ ︷︷ ︸

Hartree-Fock term

+

︸ ︷︷ ︸

2nd Born

approx.

+

︸ ︷︷ ︸

ΠRPA

+

︸ ︷︷ ︸

vertex corr.

+O
(
V 3
)
, (4.8.3)

where any diagram has to be taken in the correct multiplicity and the respective exchange terms
have to be included. Due to the same reasons as for G1 (11′, τ) (see chapter 2.1), the two-particle
Green’s function only depends on the three time differences instead of four times. In (4.8.1), we
additionally assumed that both particles are entering and leaving the system at the same time:
τ1 = τ2 and τ1′ = τ2′ , respectively, and thus only the time difference τ = τ1 − τ1′ between these
moments is an open parameter. Its conjugate variable iωλ has been introduced via Fourier trans-
form.

Computing the infinite sum in (4.8.3) is rather exhaustive (or correctly said impossible). Fortunately,
some approximations are possible. In the ladder approximation, only diagrams with direct interac-
tion between the two particles are considered. Since all other graphs produce terms of higher order
in the density n, the ladder approximation is applicable in the low-density limit. It produces all
binary interacting systems and is a solution to the two body problem (two body Schrödinger equa-
tion). The structure of the ladder approximation is similar to the Dyson- and screening equations
(4.2.5) and (4.3.5), respectively. It is called Bethe-Salpeter equation in ladder approximation:

Gladd.
2

(
12, 1′2′, iωλ

)
= G0

2

(
12, 1′2′, iωλ

)

+
∑

34
3′4′

G0
2 (12, 34, iωλ)V

(
34, 3′4′

)
Gladd.

2

(
3′4′, 1′2′, iωλ

)
(4.8.4)

⇔ Gladd
2

1

2

1′

2′ =

1

2

1′

2′

δ11′

δ22′ − +
Gladd

2

1

2

3

4

3′

4′

1′

2′ (4.8.5)

= − + − + − + . . . (4.8.6)

The δ-functions at the propagators in the first summand express that here incoming and outgoing
particles are left unchanged, see (4.8.1) and (4.8.2).
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4.8 Bound states

Bound states cannot be derived in a finite order of perturbation theory. That is why we have to sum
over an infinite number of diagrams.

For low densities and thus f(ǫ)≪ 1, we can show that the Bethe-Salpeter equation is satisfied by

Gladd.
2

(
12, 1′2′, iωλ

)
=
∑

nP

ψnP (12)
1

iωλ − EnP + µ12
ψ∗

nP (1′2′) (4.8.7)

with the collective chemical potential µ12 = µ1 + µ2, the antisymmetrized two-particle wave func-
tion

ψnP (12) =
1√
2

[

ΨnP (12)−ΨnP (21)

]

(4.8.8)

and the energy of the two-particle state EnP as a solution of the Schrödinger equation

(E1 + E2 − EnP )ψnP (12) +
∑

1′2′
V
(
12, 1′2′

)
ψnP

(
1′2′
)

= 0 . (4.8.9)

In (4.8.9) P = p1 + p1 = p1′ + p2′ is the total momentum. The internal quantum number n represents
bound but also scattering states, where it has to be reinterpreted as an asymptotic value of the relative
momentum p. The summation is running through all 2-particle states.

In the low density case f(ǫ) ≪ 1, the two-particle Green’s function (4.8.2) yields

G0
2

`
12, 1′2′, iωλ

´
=

1

iωλ − ǫ1 − ǫ2
(δ11′δ22′ − δ12′δ21′)

We will now show that (4.8.5) is satisfied by (4.8.7) using the two-particle Schrödinger

equation (4.8.9):

1

2

1′

2′

δ11′

δ22′ − + Gladd
2

1

2

3

4

3′

4′

1′

2′

= G0
2

`
12, 1′2′, iωλ

´
+
X

3 4
3′4′

G0
2 (12, 34, iωλ)V

`
34, 3′4′´Gladd.

2

`
3′4′, 1′2′, iωλ

´

(4.8.7)
= G0

2

`
12, 1′2′, iωλ

´
+
X

3 4
nP

G0
2 (12, 34, iωλ)

X

3′4′

V
`
34, 3′4′´ψnP

`
3′4′´

| {z }

(4.8.9)
= (E3+E4−EnP )ψnP (34)

· 1

iωλ − EnP + µ1′2′
ψ∗
nP

`
1′2′´ .
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4 Evaluation of diagrams and partial summation

We can now make use of (E3 + E4 − EnP ) = (iωλ − EnP + µ1′2′) − (iωλ − E1 − E2 + µ1′2′)
and ǫ1/2 = E1/2 − µ1/2 to write

= G0
2

`
12, 1′2′, iωλ

´
−
X

34

G0
2 (12, 34, iωλ)

X

nP

ψnP (34)ψ∗
nP

`
1′2′´

| {z }

=δ31′δ42′−δ41′δ32′ (completeness)
| {z }

G0
2(12,1′2′,iωλ)

| {z }

=0

+
X

nP

X

34

δ13δ24
iωλ − E3 − E4 + µ1′2′

iωλ − ǫ1 − ǫ2
ψnP (34)

| {z }

=1·ψnP (12)

· 1

iωλ − EnP + µ1′2′
ψ∗
nP

`
1′2′´

(4.8.7)
= Gladd.

2

`
12, 1′2′, iωλ

´
= Gladd

2

1

2

1′

2′

As we will see in the following section, we can interpret parts of (4.8.7) as an operator in a basis-free
representation. This will lead to an equal treatment of single-particle and bound states. In fact, the
bound state can be identified and treated as a new particle species.

Equation (4.8.7) has been shown to fulfill the Bethe-Salpeter and Schrödinger’s equation in the
low-density case and thus represents a correct limit here. At higher densities, effects of the surrounding
medium on the single-particle properties and the characteristics of the bound states (clusters) become
evident, but were not treated here. Compared to a more phenomenological approach, here the Green’s
functions technique offers a systematic way to treat bound states in dense matter. Some elements of
this way will be shown in section 5.1.
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4.9 Abstract algebraic representation

When interpreting the single particle Green’s function as a matrix element:

G0
1

(
11′, izν

)
= = δ11′

1

izν − E1 + µ1
= 〈1| Ĝ1

∣
∣1′
〉
, (4.9.1)

we can identify

Ĝ0
1 (izν) =

∑

k

|k〉 1

izν − Ek + µk
〈k| (4.9.2)

as the single particle’s propagation operator.

For the two-particle Green’s function in the low density ladder approximation, a similar treatment
is possible

Ĝladd.
2 (iωλ) =

∑

nP

|nP 〉 1

iωλ − EnP + µ12
〈nP | . (4.9.3)

In this case we can obtain our earlier results as matrix elements in the two-particle space, compare
(4.8.7):

〈12| Ĝladd.
2

∣
∣1′2′

〉
=
∑

nP

〈12|nP 〉
︷ ︸︸ ︷

ψnP (12)
1

iωλ − EnP + µ1′2′

〈nP |1′2′〉
︷ ︸︸ ︷

ψ∗
nP (1′2′) = Gladd.

2

(
12, 1′2′, iωλ

)
(4.9.4)

as well as in the space of a cluster state:

〈nP | Ĝladd.
2

∣
∣n′P ′

〉
= δnn′δPP ′

1

iωλ − EnP + µ12
= Gladd.

2

(
nP, n′P ′, iωλ

)
= (4.9.5)

Now it is obvious that in the low-density limit, single-particle and bound states can be treated in
an absolutely equivalent way as a mixture of free particles and bound states, since their propaga-
tion operators are subject to the same algebra. As an example, we refer to the mass action law
(see section 5.2, which treats bound states as new particles, allowing for reactions to reach equilib-
rium.
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4.10 Excursus: Solution to the two-particle Schrödinger equation with a

separable potential

In general, for local interactions V (12, 1′2′) = V (~r1 − ~r2) δ (~r1 − ~r′1) δ (~r2 − ~r′2) δσ1,σ′
1
δσ2,σ′

2
there is

no algebraic solution to the ladder sum. In momentum space, it leads to an integral equation, in
coordinate space to a differential equation, that cannot be solved algebraically, as it was the case with
the self-energy Σ or the polarization Π. However, there are other forms of potentials, that allow for
a factorization of the equations. These interactions are non-local in coordinate space and factorize in
momentum space.

With the ansatz (the internal variables like spin are omitted)

V (p1p2, p1′p2′) = − λ
Ω
w (~p)w

(
~p′
)
δP,P ′ , (4.10.1)

the two-particle Schrödinger equation is solvable and the scattering phase shifts δ0(E) can ana-
lytically be calculated. The solution includes scattering states as well as bound states. The poten-
tial is constructed as the product of the form factor w (~p), that depends on the relative momen-
tum

~~p =
~ (m1~p2 −m2~p1)

m1 +m2
and ~~p′ =

~ (m1~p2′ −m2~p1′)

m1 +m2
(4.10.2)

of the incoming and outgoing particles, respectively. The collective momentum is ~~P = ~ (~p1 + ~p2).
For simplicity, the species- and spin-indices have been omitted and in the following we will consider
two particles of equal mass, i.e. m1 = m2 ≡ m.

It can be shown that every potential can be decomposed into a sum of separable potentials. In
particular, this can be a sum of potentials, acting in different channels of angular momentum l. We
only consider l = 0.

Separable potentials are for example applied for modelling of interaction effects in superconductivity
and nuclear and atomic physics.

An example for such a potential is the so-called Yamaguchi interaction15 with

w (~p) =
1

p2/γ2 + 1
, (4.10.3)

that is constructed as a kind of factorized screened potential with the screening parameter γ (compare
the Debye potential).

When inserting such a separable potential into the time-independent Schrödinger equation and
separating the kinetic energy for the center-of-mass motion EnP = En + ~

2P 2

4m
, we can calculate the

energy eigenvalues of the two particles via

1 = λ

∫
d3p′

(2π)3
w (~p′)2

~2p′2
m
− En

. (4.10.4)

15See [Yam54] and [YY54], respectively.
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For a bound state En < 0, since λ > 0.

Since the total momentum ~ ~P = ~ (~p1 + ~p2) of the two-particle cluster is conserved (no
external potential), we can examine the Schrödinger equation in the representation for the
relative momentum ~p:

X

p′

Ĥ
`
p, p′

´
ψn
`
p′
´

= Enψn (p)

with the wave function

ψnP (p1p2) = ψn(p)δP,p1+p2

and the Hamiltonian

Ĥ
`
p, p′

´
=

~
2p2

2µ
δp,p′ + V

`
p, p′

´
.

The quantum number n is a placeholder for any internal excitation of the system. For example
in the case of a hydrogen-like atom, this would be n = nlmms. Form1 = m2 ≡ m, the reduced
mass is µ = m1m2

m1+m2
= m

2
:

X

p′

~
2p2

m
δp,p′ψn

`
p′
´

+
X

p′

V
`
p, p′

´
ψn
`
p′
´

= Enψn (p) .

By summing over all outgoing states p′, we find

~
2p2

m
ψn (p) −

X

p′

λ

Ω
w (~p)w

`
~p′
´
ψn
`
p′
´

= Enψn (p)

~
2p2

m
ψn (p) − λ

Ω
w (~p)

X

p′

w
`
~p′
´
ψn
`
p′
´

| {z }

=:cn

= Enψn (p)

−→ ψn (p) =
λw (~p) cn

Ω
“

~2p2

m
− En

” .

Thus, for cn we have

cn =
X

p′

w
`
~p′
´
ψn
`
p′
´

=
X

p′

w
`
~p′
´ λw (~p′) cn

Ω
“

~2p′2

m
− En

” ,

so that

1 =
X

p′

λw2 (~p′)

Ω
“

~2p′2

m
− En

” ,

or in integral representation

1 = λ

Z
Ωd3p′

(2π)3
w2 (~p′)

Ω
“

~2p′2

m
− En

” .

In the case of the Yamaguchi interaction (4.10.3), the integral equation can be solved analytically
and the binding energy results to
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E(0) = −~
2γ2

m

(√

λmγ

8π~2
− 1

)2

. (4.10.5)

We insert (4.10.3) into (4.10.4):

1 = λ

Z
d3p′

(2π)3
1

“
p′2

γ2 + 1
”2

1
“

~2p′2

m
− E(0)

” ,

transform to spherical coordinates:

1 =
4πλ

(2π)3

Z ∞

0

p′2dp′
“
p′2

γ2 + 1
”2 “

~2p′2

m
− E(0)

”

and substitute x := p′

γ
:

1 =
4πλ

(2π)3
mγ

~2

Z ∞

0

x2dx

(x2 + 1)2
“

x2 − E(0)m
~2γ2

” .

We can now make use of the integral
R∞
0

x2dx

(x2+1)2(x2+y)
= π

4(1+√
y)2

with y =

−E(0)m
~2γ2 :

1 =
π2λ

(2π)3
mγ

~2

1
„

1 +
q

−E(0)m
~2γ2

«2

−→ E(0) = −~
2γ2

m

 r

λmγ

8π~2
− 1

!2

.

Usually, we would use equation (4.10.5) to fit the interaction parameter λ to some experimental value
of the binding energy E(0). Then, the scattering phase shifts δl(E) can be evaluated. Again, we only
consider s-wave scattering, i.e. l = 0 and find

δ0

(

Ẽ
)

= arctan
2
√

Ẽ

8π
λ

~2

µγ

(

1 + Ẽ
)2
−
(

1− Ẽ
) (4.10.6)

with the reduced scattering state energy Ẽ = µ
~2γ2E > 0.
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4.10 Excursus: Two-particle problem with a separable potential

We start from the Bethe-Salpeter equation (4.8.5) in ladder approximation (for conve-
nience, we omit the exchange terms):

T
`
12, 1′2′, z

´
= V

`
12, 1′2′´+

X

1′′2′′

V
`
12, 1′′2′′´G0

2

`
1′′2′′, z

´
T
`
1′′2′′, 1′2′, z

´

with the two-particle propagator

G0
2

`
1′′2′′, z

´ (4.8.1)
=

1 − f(1′′) − f(2′′)

z − ǫ1′′ − ǫ2′′

and a separable potential

V
`
12, 1′2′´ = − λ

Ω
w(12)w(1′2′)

as well as a separable approach for the T -matrix:

T
`
12, 1′2′, z

´
= w(12)w(1′2′)t(P, z) ,

introducing the relative and center-of-mass momenta (N.B. conservation of momentum)

p =
p1′′ − p2′′

2
P = p1′′ + p2′′ = p1 + p2 ,

to find

t(P, z) = − λ

Ω

"

1 +
λ

Ω

X

p

w2(p)
1 − f(p+ P/2) − f(p− P/2)

z − ǫp+P/2 − ǫp−P/2

#−1

.

Since we analyze the low density case, we omit the Fermi functions, i.e. f ≪ 1. Thus, after
transforming to the center-of-mass system P = 0, we find:

t(0, z) = − λ

Ω

"

1 +
λ

Ω

X

p

w2(p)

z − 2ǫp

#−1

and

T
`
12, 1′2′, z

´
= − λ

Ω
w(12)w(1′2′) · 1

1 + λ
Ω

R
Ωd3p
(2π)3

w2(p)
z−2ǫp

.

Since the integrand only depends on the length of p, the integral in the denominator can be
simplified in spherical coordinates:

I(z) = λ

Z
d3p

(2π)3
w2(p)

z − 2ǫp
=

λ

2π2

Z ∞

0

dp
p2w2(p)

z − ~2p2

µ

.

For selecting the scattering case, we set z = E > 0 and after inserting the Yamaguchi form
factor (4.10.3), we have

I(E) =
λ

2π2

Z ∞

0

dp
p2

`
p2/γ2 + 1

´2 · 1

E − ~2p2

µ
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4 Evaluation of diagrams and partial summation

Substitution of x = p/γ and insertion of the reduced energy Ẽ = µ
~2γ2E > 0 leads to the

integral that we already considered in our previous calculation:

I(E) = − λ

2π2

µγ

~2

Z ∞

0

dx
x2

(x2 + 1)2
“

x2 + (−Ẽ)
”

= − λ

2π2

µγ

~2

π

4
“

1 +
p

−Ẽ
”2

= − λ

8π

µγ

~2

1

4
“

1 + i
p

Ẽ
”2 .

We separate for real and imaginary part:

= − λ

8π

µγ

~2

1
“

1 + Ẽ
”2 ·

h“

1 − Ẽ
”

+ i
“

−2
p

Ẽ
”i

.

Insertion of the real and imaginary part of the integral into the T -matrix leads to

T
“

12, 1′2′, Ẽ
”

=
− λ

Ω
w(12)w(1′2′)

“

1 + Re
n

I(Ẽ)
o”

+ i
“

Im
n

I(Ẽ)
o”

= − λ

Ω
w(12)w(1′2′) ·

“

1 + Re
n

I(Ẽ)
o”

− i
“

Im
n

I(Ẽ)
o”

“

1 + Re
n

I(Ẽ)
o”2

+
“

Im
n

I(Ẽ)
o”2 .

Since the form factors w(p) and the parameter λ are real-valued, we can now calculate the
scattering phase-shift:

tan
“

δ0(Ẽ)
”

=
Im
n

T (12, 1′2′, Ẽ)
o

Re
n

T (12, 1′2′, Ẽ)
o =

−Im
n

I(Ẽ)
o

1 + Re
n

I(Ẽ)
o =

2
p

Ẽ

8π
λ

~2

µγ

“

1 + Ẽ
”2

−
“

1 − Ẽ
”
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4.10 Excursus: Two-particle problem with a separable potential

According to the relation

k cot δ = −1

a
+

1

2
r0k

2 − . . . (4.10.7)

with E = ~
2k2

2µ
, the scattering length a and the effective range r0 can be calculated from expression

(4.10.6)16:

a =

(

1− 8π~
2

λµγ

)−1 √
2

γ
(4.10.8)

r0 =

(

1 + 2 · 8π~
2

λµγ

)
1√
2γ

. (4.10.9)

The reduced energy is

Ẽ =
µ

~2γ2
E =

µ

~2γ2

~
2k2

2µ
=

k2

2γ2
,

so that from (4.10.6), we find

k cot δ0(k
2) = k ·

8π
λ

~
2

µγ

“

1 + k2

2γ2

”2

−
“

1 − k2

2γ2

”

√
2 k
γ

=
γ√
2

„
8π

λ

~
2

µγ

„

1 +
k2

γ2
+

k4

4γ4

«

−
„

1 − k2

2γ2

««

= − γ√
2

„

1 − 8π~
2

λµγ

«

| {z }

1/a

+
1√
2γ

„

1 + 2 · 8π~
2

λµγ

«

| {z }

r0

·k
2

2
+ O(k4) .

16See equation (20) in [Yam54].
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5 Diagram technique and Cluster decompositions

5.1 Elements of the diagram technique and the chemical
picture

The Green’s functions technique is a very powerful tool for calculating physical properties of many-
particle systems: After evaluating the Green’s function of a certain system, we can calculate the spec-
tral function and correlation functions. Therefrom, the physical characteristics, we are interested in,
such as density, pressure, or the dielectric function, can be derived (see section 2.2).

The Green’s function itself can be deduced from the diagram technique as a visual representa-
tion of perturbation theory, which allows to select relevant contributions to perform partial summa-
tions.

Some fundamental components of this technique are

• free fermion propagator
G0

1 (1, izν) = 1, izν = 1
izν−ǫ1

• interaction, e.g. Coulomb interaction
V 0 (q, izµ) = q, izµ = 1

Ωε0q2

• vertex for Coulomb systems

Γ0
1 (1zν1 , 2izν2 ; q, izλ) =

q, izµ
= e1δc1,c2δp1+q,p2δz1+zλ,z2δσ1σ2 .

In our notation, the superscript index 0 denotes the respective quantities for free particles, i.e. the
zero density limit.

However, this picture contains some open questions, that have to be answered in the framework of a
quantum statistical approach.

One important concept is elementary for the statistical description: the idea of ’particles’ and their
interaction. Although historically, the elementary particles of statistical physics and thermodynamics
are molecules, that are treated as simple particles, we know that they consist of atoms which again
contain smaller constituents. While especially the inneratomic structure of electrons and nucleons and
finally quarks and gluons can only be excited with the high energies of elementary particle physics
experiments, the molecular structure can be resolved with low excitation energies that are sufficient
to stimulate vibration and rotation of the molecules.

Therefore, it is a question of temperature (and also density), whether the internal degrees of freedom
of a composed particle can be excited. If this is not the case, it can be treated as an ’elementary’
particle.

A closed and consistent description of all these structural features with the Green’s functions tech-
nique and its diagram representation is possible in the so-called ’chemical picture’. There, the bound
states that are sufficiently stable, are interpreted as a new sort of particles. The many-particle system
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5 Diagram technique

is then described as consisting of the primary unbound particles and the new bound species that are
compounds of at least two primary particles.1.

At sufficiently low densities and temperatures (below Mott criterion), bound states are evident. Here,
the treatment in a chemical picture leads to the formulation of a mass-action-law and the chemical
equilibrium.

To describe the propagation of particle clusters, in section 4.8 we have introduced the ladder approx-
imation as a new diagram element that satisfies the Bethe-Salpeter equation. In the following, we
will not consider the exchange terms:

Gladd
2 = +

Gladd
2 = (5.1.1)

It can be represented in two-particle space |nP 〉 by

Gladd.
2

(
nP, n′P ′, izµ

)
= =

δPP ′ δnn′

izµ − EnP − µ12
≡ Gladd.

2 (nP, izµ) , (5.1.2)

when considering the low density limit. As we already saw in section 4.9, with this formalism, a com-
pletely analogous treatment of single-particle and binary bound states is possible.

Consequently, we can introduce a two-particle vertex as an interaction with each of the two bound
particles similar to (4.5.3):

Γ0
2

(
nP, izµ, n

′P + q, izµ + izλ
)

= = + (5.1.3)

=
∑

12
1′2′

ψ∗
nP (12)

(

e1δp1,p′1+qδp2p′2
+ e2δp1,p′1

δp2p′2+q

)

ψn′P ′
(
1′2′
)
δzµ+zλ,z′µδP+q,P ′ (5.1.4)

In the long wavelength limit q → 0 for a hydrogen-like cluster e2 = −e1, the two particle vertex can de-
scribe the coupling of an atom to the electric field through its dipole matrix element:

Γ0
2

(
nP, izµ, n

′P + q, izµ + izλ
) q→0−→ Γ0

2

(
nn′, q → 0

)
= ie~q ~dnn′ δP+q,P ′δzµ+zλ,z′µ . (5.1.5)

with the dipole matrix element

~dnn′ =

∫

d3~r ψ∗
n (~r) ~r ψn′ (~r) . (5.1.6)

Starting from (5.1.4), we can introduce the particle’s collective momentum ~P = ~p1 + ~p2 and
the relative momentum

~prel =
m2~p1 −m1~p2

m1 +m2
,

1See the monograph [KKER86] for further details.
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5.1 Elements of the diagram technique and the chemical picture

which in the case of interaction with particle 1 (first summand in brackets) yields

~p ′
rel =

m2 (~p1 − ~q) −m1~p2

m1 +m2
= ~prel −

m2

m1 +m2
~q

and in the other case

~p ′
rel = ~prel +

m1

m1 +m2
~q .

After transforming the wave functions to relative momentum representation: ψnP (12) =
ψn (~prel) δP,p1+p2 , we have

Γ0
2

`
nP, izµ, n

′P + q, izµ + izλ
´

= δP+q,P ′δzµ+zλ,z
′

µ

Z
Ωd3~prel

(2π)3
ψ∗
n (~prel)

·
»

e1ψn′

„

~prel −
m2

m1 +m2
~q

«

+ e2ψn′

„

~prel +
m1

m1 +m2
~q

«–

.

For simplicity we assume that particle 1 is a proton while particle 2 is an electron. Thus we
can use e ≡ e2 = −e1 and m2 ≪ m1 → m2 ≈ 0:

≈ −eδP+q,P ′δzµ+zλ,z
′

µ

Z
Ωd3~prel

(2π)3
ψ∗
n (~prel) [ψn′ (~prel) − ψn′ (~prel + ~q)] .

Now we can transform the wave-functions into coordinate space via
ψn (~p) = 1√

Ω

R
d3~r ψn (~r) ei~p~r:

= −eδP+q,P ′δzµ+zλ,z
′

µ

Z

d3~r1

Z

d3~r2

Z
d3~prel

(2π)3
ψ∗
n (~r1) e−i~prel~r1

·
h

ψn′ (~r2) ei~prel~r2 − ψn′ (~r2) ei(~prel+~q)~r2
i

= eδP+q,P ′δzµ+zλ,z
′

µ

Z

d3~r1

Z

d3~r2

Z
d3~prel

(2π)3
ei~prel(~r2−~r1)

| {z }

δ3(~r2−~r1)

· ψ∗
n (~r1)

h

ei~q~r2 − 1
i

ψn′ (~r2)

= eδP+q,P ′δzµ+zλ,z
′

µ

Z

d3~r1 ψ
∗
n (~r1)

h

ei~q~r1 − 1
i

ψn′ (~r1) .

After expanding the exponential function for ~q → 0 and renaming ~r1 → ~r, we reach

= eδP+q,P ′

Z

d3~r δzµ+zλ,z
′

µ
ψ∗
n (~r)

»

i~q~r − 1

2
(~q~r) (~q~r) + . . .

–

ψn′ (~r)

≈ ieδP,P ′+qδzµ+zλ,z
′

µ
~q

Z

d3~r ψ∗
n (~r) ~r ψn′ (~r) ,

which is the same as (5.1.5) with the dipole matrix element

~dnn′ =

Z

d3~r ψ∗
n (~r) ~r ψn′ (~r) .

Obviously, the final three free parameters of Γ0
2 in the long-wavelength limit are the internal

quantum numbers nn′ and the transfer momentum q.

Note, that for an instantaneous interaction, the interaction and thus also the vertex function becomes
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5 Diagram technique

independent of the frequency and we can write

Γ0
2

(
nP, izµ, n

′P + q, izµ + izλ
)
≡ Γ0

2

(
nP, n′P + q

)
. (5.1.7)

A generalization to clusters with A > 2 constituents is possible by adding graphs, where the single-
particle propagators are replaced with A-particle propagators, that represent the bound contribu-
tions.

Within the perturbation theory, the diagrams must be counted correctly (i.e. spin degeneration, . . . )
and special care has to be taken to avoid double counting throughout the different diagram classes.
This is becoming even more complicated when considering a mixture of free and bound states, since
often divergent or double-counted graphs are not obvious.

For example, when calculating the single-particle self-energy Σ1 in a screened ladder approx-
imation

Σ = + + + + . . .

with contributions of the polarization function Π in the screened interaction

Π = ,

the diagram will appear in as well as in .
Thus, in the lower orders the corresponding diagrams have to be subtracted, what leads to
the so-called ’parquet approximations’.
For instance

Σ = Gladd
2

| {z }

binary
collisions
(T-matrix)

+
| {z }

screened di-
electric func-
tion

−
| {z }

Born contribution
subtracted because
of double counting

− . . .

is the Gould-deWitt approximation.

An analogous problem for example arises when examining contributions to the polarization
function of the type

as we will do in section 5.3. Here, also a vacuum diverging graph of the form and

the unintentionally double-counted graph (that is reducible) appear.

Thus whenever working with the diagram technique, special care has to be taken to avoid

inconsistencies with real physics and nonanalytical behavior in mathematics.

In section 4.4 we found an approximation for the single-particle’s polarization function Π ≈ ΠRPA as
in (4.4.1). With the screening equation (4.3.5) it is now possible to find expressions for the screened
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5.1 Elements of the diagram technique and the chemical picture

potential V s and thus appropriate contributions to the self-energy to calculate the equation of state
or the optical and transport properties:

• The Montroll-Ward approximation

ΣMW
1 (p, izµ) = (5.1.8)

has already been under consideration as the the single-particle screened self-energy, compare
section 4.6.

• The screened two-particle self-energy

Σ2

(
nn′, P, izµ

)

=

= δP,P ′δzµ,z′µ

∑

n1,q,izλ

Γ0
2 (nP, izµ;n1, P + q, izµ + izλ)Gladd.

2 (n1, P + q, izµ + izλ)

Γ0
2 (n1, P + q, izµ + izλ;n, P, izµ)V s (q, izλ) (5.1.9)

would be an appropriate generalization to two-particle Green’s functions2. It describes the
interaction of the cluster’s dipole moment with the environmental polarization. This approach for
example allows us, to calculate the spectral line shape (see section 5.4). However, its evaluation
is not straightforward. For example, in general it is not diagonal in the internal quantum number
n in contrast to P and izµ for homogeneous systems.

A solution for Σ2 can be derived by solving an effective wave-equation with an additional potential
term that describes the (dynamic) coupling to the environment (dielectric function). It contains the
contribution of the dynamic self-energy to the single-particle energy as well as the dynamic screening
of the interaction3.

2The screened self-energy including dynamical screening has for example been investigated in [ZKK+78].
3Since a complete evaluation of this diagram would go beyond this lecture, we again refer to the book [KKER86],

section 8.2.1 Explicit expression for shift and broadening, where with equation (8.36) a closed expression for Σ2 is
derived.
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5 Diagram technique

5.2 Cluster expansion for the single-particle self-energy and equation of

state

For computation of the single-particle Green’s function G1, the self-energy Σ1 is needed. If we want
to describe a system with bound states we have to perform a cluster expansion for Σ1 in terms of the
T -matrix4:

Σ1 = T
(2)
ladd. + T

(3)
ladd. + . . . . (5.2.1)

Thus, for example the density of the bound state is incorporated into the equation of state n(T, µ)
(mass action law).

The calculation of the T -matrices is performed via a Bethe-Salpeter equation

GA = G0
A +G0

AT
(A)G0

A (5.2.2)

T
(A)
ladd. = V (A) +

.

.

.

.

.

.V (A) T
(A)
ladd. , (5.2.3)

T (A) = V (A) + V (A)G0
AV

(A) (5.2.4)

V (A) =
∑

i<j

V
(
ij, i′j′

)
δkk′ (5.2.5)

in analogy to the A-particle propagators, compare equation (4.8.5). When inserting (5.2.3) into (5.2.1),
the respective double-counted contributions have to be subtracted correctly.

Environmental effects for clusters, especially interaction with other clusters and exchange contribu-
tions, can be described by respective terms for the cluster self-energy.

Similar to the equation of state n(0)(β, µ) = (2s + 1)
∫ d3p

(2π)3
f1 (Ep) of an ideal quantum gas, we will

derive the mass action law as an equation of state for an interacting system that forms a mixture of
free particles and A-particle clusters.

4For a more detailed discussion of the cluster expansion for the self-energy and the ladder T -matrix approximation, we
recommend considering the publication [RMS82].
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5.2 Cluster expansion for self-energy

As we already introduced earlier in this lecture, we express the particle density n in terms of
the spectral function A:

n(β, µ) =
1

Ω

X

1

˙
a+
1 a1

¸
=

1

Ω

X

1

Z
dω

2π
f(ω)A(1, ω) (A)

A(1, ω)
(2.2.10)

= 2Im {G1 (1, ω − iε)}
(4.2.4)

= 2Im


1

ω − E1 − Σ (1, ω − iε) − iε

ff

=
2Im {Σ (1, ω − iε)}

[ω − E1 − Re {Σ (1, ω)}]2 + [Im {Σ (1, ω − iε)}]2
.

Thus, the spectral function takes the form

≡ 2∆(ω)

f2(ω) + ∆2(ω)
= 2πδ∆ (f(ω)) ,

that in the limit ∆ → 0 is the δ distribution:

lim
∆(ω)→0

δ∆ (f(ω)) = δ (f(ω)) .

We assume, the imaginary part of the self-energy and thus ∆(ω) to be small and perform a
perform a Taylor expansion

δ∆ (f(ω)) = δ (f(ω)) + ∆
d

d∆
δ∆ (f(ω))

˛
˛
˛
˛
∆=0

,

and use the connection between the delta distribution and the principal value distribution for
small ∆5

lim
∆→0

d

d∆
δ∆(E) = − lim

∆→0

1

π

d

dE

P
E

to derive

A(1, ω) = 2πδ
“

ω − (E1 + Re {Σ(1, ω)})
| {z }

E
qu.
1

”

− 2πIm {Σ(1, ω − iε)} 1

π

d

dω

P
ω − E1 − Re {Σ(1, ω)}

= 2πδ (ω − Equ.
1 ) − 2Im {Σ(1, ω − iε)}

[ω − Equ.
1 ]2

Thus, when considering the self-energy corrections (especially the imaginary part) as to be
small compared to the single-particle energy Σ ≪ E, the spectral function is:

A(1, ω) = 2πδ (ω − E1) +
2Im {Σ (1, ω)}

[ω − E1]
2 , (B)

5For a further discussion of these calculations, we recommend the publication [KKL84].
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5 Diagram technique

where the first summand is the well-known quasi-particle contribution with the quasi-particle
energy Equ.

1 = E1 + Re {Σa(1, ω)}|ω=E
qu.
1

.

We will evaluate (A) in the low-density limit n → 0 with the cluster decomposition of the
self-energy

Σ = Σ(2) + Σ(3) + . . . = T
(2)
ladd. + T

(3)
ladd. + . . . ,

where the contribution of interaction with (A− 1)-particle clusters is given by

Σ(A) = T (A)G0
A−1 =

. . . G
(A−1)
0

T
(A)
ladd. . (C)

In the low-density case n→ 0, we know the following expression for the free (A− 1)-particle
propagator, compare (4.8.7):

G0
A−1

`
2 . . . A, 2′ . . . A′, izν

´
=
δ22′ . . . δAA′

izν − E2...A
. (D)

Here and in the following, we have to take care of the collective spin of the cluster, i.e.
if (A − 1) is even, the propagator describes a bosonic particle and izν corresponds to an
even Matsubara frequency. For odd (A − 1), we have fermionic character and thus odd
Matsubara frequencies. This also determines the character of the frequency argument of
the T -matrix.
The T -matrix can be written in bilinear decomposition6as

T (A) `1 . . . A, 1′ . . . A′, izµ
´

=
X

nP

(EA,nP − E1...A)
ψ

(A)
nP (1 . . . A)ψ

(A)∗
nP (1′ . . . A′)

izµ − EA,nP
(izµ − E1′...A′)

and after using (izµ − E1′...A′) = (izµ − EA,nP + EA,nP − E1′...A′), we have

=
X

nP

(EA,nP − E1...A)ψ
(A)
nP (1 . . . A)ψ

(A)∗
nP

`
1′ . . . A′´

»

1 − EA,nP − E1′...A′

EA,nP − izµ

–

. (E)

We can now insert (D) and (E) into (C) and find

Σ(A) `11′, izλ
´

=
1

β

X

zµ

2...A,2′...A′

T (A) `1 . . . A, 1′ . . . A′, izµ
´
G0
A−1

`
2 . . . A, 2′ . . . A′, izµ − izλ

´

=
1

β

X

zµ

2...A,2′...A′

X

nP

(EA,nP − E1...A)ψ
(A)
nP (1 . . . A)ψ

(A)∗
nP

`
1′ . . . A′´

·
»

1 − EA,nP − E1′...A′

EA,nP − izµ

–
δ22′ . . . δAA′

izµ − izλ − E2...A
.

6This expression has been derived for a more general case for example in [SZ79].
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Due to the δ functions, the sums over 2′ . . . i′ can be executed. After some reordering, we find

=
X

nP
2...A

(EA,nP − E1...A)ψ
(A)
nP (1 . . . A)ψ

(A)∗
nP (1 . . . A)

· 1

β

X

zµ

»

1 − EA,nP − E1...A

EA,nP − izµ

–
1

izµ − izλ − E2...A

and after a partial fraction decomposition in the second summand

=
X

nP
2...A

(EA,nP − E1...A)ψ
(A)
nP (1 . . . A)ψ

(A)∗
nP (1 . . . A)

· 1

β

X

zµ

»
1

izµ − izλ − E2...A
+

EA,nP − E1...A

izλ − EA,nP + E2...A

„
1

izµ − izλ − E2...A
− 1

izµ − EA,nP

«–

.

Using expression (3.3.2), the frequency sum can be performed:

=
X

nP
2...A

(EA,nP − E1...A)ψ
(A)
nP (1 . . . A)ψ

(A)∗
nP (1 . . . A)

·
»

fA (izλ + E2...A) +
EA,nP − E1...A

izλ − EA,nP + E2...A
(fA (izλ + E2...A) − fA (EA,nP ))

–

.

Here, the distribution function fA is a generalization of the Fermi and Bose distribution to
A-particle clusters:

fA(E) =
1

eβ(E−Aµ) − (−1)A
.

Since it results from some Hartree-Fock contributions, we will omit the first summand
in the following. Additionally, we know that the external frequency izλ corresponds to odd
(fermionic) Matsubara frequencies and thus fA(izλ + E) = −fA−1(E). Now we have a
compact expression for the A-particle self-energy:

Σ(A) (1, izλ) = −
X

nP
2...A

(EA,nP − E1...A)2 ψ
(A)
nP (1 . . . A)ψ

(A)∗
nP (1 . . . A)

· fA−1 (E2...A) + fA (EA,nP )

izλ − EA,nP + E2...A

Σ (1, izλ) =
X

A

Σ(A) (1, izλ) .

This result can be inserted into (B). Since we assume the energy correction due to self-energy
effects to be small compared to the single-particle free energy E1, we can omit the respective
terms in the denominator of (B). The imaginary part of Σ(A) (11′, ω − iε) can be calculated
with the Dirac identity (2.2.8) and altogether we find

A(1, ω) = 2πδ (ω − E1) + 2π
X

A

X

nP
2...A

(EA,nP − E1...A)2

(ω − E1)
2 ψ

(A)
nP (1 . . . A)ψ

(A)∗
nP (1 . . . A)

· (fA−1 (E2...A) + fA (EA,nP )) δ (ω − EA,nP + E2...A) ,

95



5 Diagram technique

what in (A) results to

n(β, µ) =
1

Ω

X

1

Z
dω

2π
f1(ω)A(1, ω)

=
1

Ω

X

A

X

1...A

X

nP

(EA,nP − E1...A)2
`
EA,nP − (E2...A + E1)

| {z }

E1...A

´2ψ
(A)
nP (1 . . . A)ψ

(A)∗
nP (1 . . . A)

· f1 (EA,nP − E2...A) (fA−1 (E2...A) + fA (EA,nP ))

=
1

Ω

X

A

X

1...A
nP

ψ
(A)
nP (1 . . . A)ψ

(A)∗
nP (1 . . . A) f1 (EA,nP − E2...A)

· (fA−1 (E2...A) − fA (EA,nP )) .

Being only interested in the self-energy corrections, we omitted the quasi-particle contribution
2πδ (ω − E1) in the spectral function A(1, ω).
While the argument of the first distribution function in the last factor contains contributions
of (A−1) particles and thus includes (A−1) ·µ, the argument of the second function covers A
particles and thus A ·µ. Every factor eβµ ∝ nΛ3 contributes one order in the density n. That
is why, in the low-density case n → 0, we can neglect the second summand in comparison to
the first one.
Additionally, we can also expect non-degeneracy in the low-density limit with finite temper-
ature, and thus replace the Bose and Fermi functions by Maxwell distributions:

n(β, µ) =
1

Ω

X

A

X

1...A
nP

ψ
(A)
nP (1 . . . A)ψ

(A)∗
nP (1 . . . A)

· e−β(EA,nP −E2...A−µ) · e−β(E2...A−(A−1)µ)

=
1

Ω

X

A

X

1...A
nP

ψ
(A)
nP (1 . . . A)ψ

(A)∗
nP (1 . . . A) e−β(EA,nP −Aµ) .

Up to now, we only considered the T -matrix with one definite incoming and outgoing particle.
In fact, the A-particle T -matrix has A such particles, so that we cannot determine a certain
external one. Thus, we have to introduce a factor A, that obeys the free choice of the incoming
particle:

=
1

Ω

X

A

X

nP

A · e−β(EA,nP −Aµ) .

Since in equilibrium all primary particles experience the same chemical potential µ and thus an
A-particle cluster has the chemical potential A · µ, we have found an explicit expression for any
partial density in a system of primary particles and A-particle clusters and the total density as their
sum:

n(β, µ) =
1

Ω

∑

A

∑

nP

A · e−β(EA,nP−Aµ) . (5.2.6)

with the clusters kinetic energy EA,nP , that contains the center-off-mass movement (collective mo-
mentum P ) and internal excitation (internal quantum number n).

With 1
Ω

∑

P =
∫

d3P
(2π)3

, we can evaluate the momentum and spin summation in P and find
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5.2 Cluster expansion for self-energy

n(β, µ) =
∑

A

(2sA + 1)A · Λ−3
A eAβµ ·

∑

n

e−βEint.
n , (5.2.7)

where Eint.
n is the energy of any internal degree of freedom Eint.

n = EA,nP − ~
2P 2

2MA
and ΛA the respective

thermal wavelength.

The equation of state for the many-particle system (5.2.6) is the mass action law. For example in the
case ofA = 2, it describes the chemical reaction electron+ion ⇌ atom.

The equation of state for the bound system can be further improved by several approaches:

• The inclusion of scattering states leads to the Beth-Uhlenbeck formula 7:

Ω · n(2) =
∑

P

[
bound∑

n

eβ(Ebound
nP −2µ) +

∑

l

(2l + 1)

∫ scatt. dE

2π
g2(E)

d

dE
δl(E)

]

(5.2.8)

with the scattering phase shifts δl(E). It is interesting to mention, that, since the exponential
term in the first sum also results from a Bose distribution g2(E), the Beth-Uhlenbeck-
expression formally can contain two singularities. They describe Bose-Einstein-condensation
of atoms (first summand) and the formation of Cooper-pairs (second summand).

• The inclusion of an improved (N − 1)-particle propagator in TN
ladd. instead of N single-particle

propagators, i.e.

T
(N−1)
ladd.

T
(N)
ladd. (5.2.9)

enables us to describe cluster-cluster-interaction, what leads to the van-der-Waals interaction.

• The interaction itself can be improved by accounting for media effects by replacing the bare
Coulomb potential by a screened one.

7A very detailed derivation can be found in [Hua87], section 10.3: The second virial coefficient.
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5.3 Cluster-RPA for the polarization function

In section 4.4, we evaluated the polarization function of a single particle in random phase approxima-
tion. Obviously, an isolated particle can neither show any spectral lines nor other features of a plasmas
emission spectrum, e.g. Doppler- and pressure broadening, etc. Especially spectral lines result from
internal transitions of bound particle systems. When describing their impact on the dielectric function
by calculating a bound states polarization function, we can model the optical properties of a plasma
from fundamental principles.

At first, we have to formulate the dielectric function in a way, that absorption and emission of photons
by bound states, e.g. atoms, can be easily handled. A cluster decomposition of the dielectric function,
utilizing the chemical picture, offers such a possibility:

ΠRPA
cl (q, iωλ) = ΠRPA

1 (q, iωλ) + ΠRPA
2 (q, iωλ) + . . . (5.3.1)

with

ΠRPA
1 (~q, iωλ)

(4.4.1)
= ~q,izν ~q,izν =

∑

p

f (ǫp)− f (ǫp−q)

iωλ − (ǫp − ǫp−q)
(5.3.2)

ΠRPA
2 (~q, iωλ) = =

∑

nn′P

∣
∣Γ0

2

(
n, P ;n′, P − q

)∣
∣
2 g (ǫn,P )− g

(
ǫn′,P−q

)

iωλ −
(
ǫn,P − ǫn′,P−q

) (5.3.3)

See equation (5.1.7) and remarks there for arguments, why the vertex function’s frequency parameter
has been omitted.

With the bosonic equivalent to (3.3.2), the proof for (5.3.3) is short:

G2

“

iΩλ − iωλ;n′, ~P − ~q
”

G2

“

iΩλ;n, ~P
”

→ Γ2, ~q, iωλΓ2, ~q, iωλ →

=
X

nn′,P,Ωλ

−Γ2

`
n, P ;n′, P − q

´
· 1

iΩλ − ǫn,P
· 1

iΩλ − iωλ − ǫn′,P−q
· Γ2

`
n′, P − q;n, P

´

=
X

nn′P

˛
˛Γ0

2

`
nP, n′P − q

´˛
˛
2 1

iωλ − (ǫn,P − ǫn′,P−q)

»
1

iΩλ − ǫn,P
− 1

iΩλ − iωλ − ǫn′,P−q

–

=
X

nn′P

˛
˛Γ0

2

`
nP, n′P − q

´˛
˛
2 g (ǫn,P ) − g (ǫn′,P−q)

iωλ − (ǫn,P − ǫn′,P−q)
.

We perform an analytic continuation iωλ → ~ω + iη:

ΠRPA
2 (~q, ~ω) =

∑

nn′P

∣
∣Γ0

2

(
n, P ;n′, P − q

)∣
∣
2 g (ǫn,P )− g

(
ǫn′,P−q

)

~ω + iη −
(
ǫn,P − ǫn′,P−q

) . (5.3.4)
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5.3 Cluster-RPA for the polarization function

In many applications, it is sufficient to approximate the index of refraction as n(ω) ≈ 1, reducing
our task of calculating α(ω) to finding Im ε(ω), compare section 4.7. Using ε(ω) = 1 − V (q)Π(q, ω),
compare (4.3.9), this can be accomplished by determining ImΠ2:

Im ΠRPA
2 (~q, ~ω)

(2.2.8)
= −π

∑

nn′P

∣
∣Γ0

2

(
n, P ;n′, P − q

)∣
∣
2

·
(
g (ǫn,P )− g

(
ǫn′,P−q

))
· δ
(
~ω −

(
ǫn,P − ǫn′,P−q

))
. (5.3.5)

In the long-wavelength limit q → 0, we can analyze this expression in more detail. Let us consider a
classical plasma nΛ3 ≪ 1 , where the Bose-function of the atoms can be replaced by a Maxwellian
distribution

gatomic (En,P ) ≈ 1

4
n (En) Λ3

eie
−β ~

2P2

2M (5.3.6)

with the thermal wavelength Λei =
√

2π~2

MkBT
. Here, n (En) = e−βEn is the Boltzmann distribution

for the bound states and the total energy En,P = En + ~
2P 2

2M
also contains the kinetic energy from the

center of mass motion. With Γ0
2

q→0−→ ie~q ~dnn′ δP,P ′+q, cf. (5.1.5), we obtain the clusters polarization
function in random phase approximation, ’cluster-RPA’:

Im ΠRPA
2 (~q, ~ω) = − 1

2(2π)
3
2

(Mβ)
1
2

~q

∑

nn′

∣
∣
∣Γ0

2

(

n, P +
q

2
;n′, P − q

2

)∣
∣
∣

2

· [n (En)− n (En′)] · e−βMc2

2ω2 (ω−ωnn′ )
2

(5.3.7)

Note, that the expression is written in terms of the relative momenta as it is often usual. With
the transformation P → P + q

2 , we can simply recast it to the form, that has been introduced in
section 5.1.

To verify this expression, we perform a variable substitution P → P + q
2

in (5.3.5) and choose

the z-axis of the ~P -integration along the direction of ~q. Note, that δP+ q
2
,P ′− q

2
holds due to

the long-wavelength limit, cf. (5.1.5). Thus:

0
!
= ~ω −

“

ǫn,P+ q
2
− ǫn′,P− q

2

”

= ~ω − (En − En′) − ~
2

M

~P~q

2
− ~

2

M

~P~q

2

= ~ω − (En − En′) − ~
2

M
Pzq

⇒ Pz =
M

~2q
(~ω − (En − En′))

=
M

~q
(ω − ωnn′) ,

defining the transition frequency ωnn′ = 1
~

(En − En′).
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5 Diagram technique

Using cylindrical coordinates, the perpendicular part can be integrated:

ImΠRPA
2 (~q, ~ω) = −π

4

1

(2π)3

„
2M

~2β

«

Λ3
ei

X

nn′

˛
˛
˛Γ

0
2

“

n, P +
q

2
;n′, P − q

2

”˛
˛
˛

2

· [n (En) − n (En′)] e−β
~
2P2

z
2M · δ

„

~ω −
„

En − En′ − ~
2

M
Pzq

««

= −π
4

1

(2π)3

„
2M

~2β

«

Λ3
ei
M

~2q

X

nn′

˛
˛
˛Γ

0
2

“

n, P +
q

2
;n′, P − q

2

”˛
˛
˛

2

e
−β M

2q2 (ω−ωnn′)2

Finally, taking q = ω
c
, we arrive at eq. (5.3.7).

Having found an expression for Im ΠRPA
2 (~q, ~ω), we can use (4.3.11) to calculate the imaginary

part of the dielectric function Im εRPA (~q, ~ω) and finally, with (4.7.8) the absorption coefficient
α (ω):

Im ΠRPA
2 (~q, ~ω)

(4.3.11)←→ Im εRPA (~q, ~ω)
(4.7.8)←→ α (ω) . (5.3.8)

Note, that eq. (5.3.7) has an interesting interpretation. First of all, it is a Gaussian distribution with
respect to the frequency, having a maximum at

ω = ωnn′ =
1

~
(En − En′) . (5.3.9)

Thus, we indeed obtain spectral lines, where the maximum position is given by the allowed transition
frequencies between two bound states n and n′. Note also, that the dipole matrix element ~dnn′ enters
the expression via

∣
∣Γ0

2

∣
∣2. In this way, the traditional selection rules for dipole radiation are established

in eq. (5.3.7).

However, the spectral lines are broadened due to the motion of the bound states (in the form of a
Maxwellian distribution). Thus, we describe the Doppler broadening of spectral lines due to the
thermal motion of absorbers and emitters in a plasma. The same result is derived in plasma theory by
averaging the Doppler shift for a velocity v over a Maxwellian distribution.

Obviously, this approximation is important for describing a partially ionized plasma in the limit of
low densities. While ΠRPA

1 only results in contributions to the continuum, ΠRPA
2 already describes

Doppler broadened atomic transitions.8 Now it is possible to treat strongly correlated state contri-
butions (bound states) for calculating the dielectric function as well as density-correlation functions
(dynamic structure coefficient).

8For further details and more sophisticated calculations, see [RD79].
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5.4 Consistent approximations for the cluster self-energy

5.4 Consistent approximations for the cluster

self-energy

In section 5.3, we have shown, that a cluster decomposition of Π2 can be used to investigate optical
properties of a plasma. By calculating ImΠRPA

2 , Doppler broadening can be described accounting
for the thermal motion of absorbers and emitters. However, there are additional effects leading also
to a broadening of spectral lines. They are due to the perturbation of the emitting and absorbing
atoms by the surrounding medium, in our case by a plasma. Having free charges around the atom, the
bound states are modified by the Stark effect. Since the motion of the plasma particles is random,
the atom is subject to a fluctuating electric field both in magnitude and direction. Of course, these
changes will be the more pronounced, the higher the density/pressure in the system. Therefore, this
kind of broadening is referred to as pressure-broadening.

The obvious way to account for medium modifications within the Green’s functions technique is
an approximative treatment of the self-energy which contains all corrections to the atom propagator
beyond the isolated, unperturbed one.

Thus, we consider:

= + Σ2 (5.4.1)

In order to describe the collision of a plasma electron with the radiating atom, we start from the
screened two-particle self-energy:

Σ2 (n, P ; izµ) =
n′, P ′

izµ + izν

n, P, izµ n, P, izµ

q, izν

(5.4.2)

Here, n labels the bound state, P the center of mass movement and zµ is a bosonic Matsubara

frequency.

This diagram has already been considered in section 5.1:

Σ2 (n, P ; izµ) =
X

n′,q,izν

Γ0
2

`
n, P ;n′, P + q; izµ + izν

´

·Gladd.
2

`
n′, P + q; izµ + izν

´

· Γ0
2

`
n′, P + q;n, P ; izµ + izν

´
V s (q, izν)

and can be further evaluated using (5.1.2):

Gladd.
2

`
n′, P + q; izµ + izν

´
=

1

izµ + izν − ǫn′,P+q − µ12

and the spectral representation of the dynamically screened interaction (4.3.12)

V s(q, izν) = V (q)

»

1 +

Z ∞

−∞

dω

π
Im
˘
ε−1 (q, ω − iη)

¯
· 1

izν − ω

–

.
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5 Diagram technique

Performing the Matsubara sum with respect to zν and neglecting a Fermi function for
nΛ3 ≪ 1, we obtain

〈n |Σ (izµ)|n〉 = − 1

e2

Z
d3q

(2π)3
V (q)

X

n′

˛
˛Γ0

2

`
n, P ;n′, P + q

´˛
˛

·
Z ∞

−∞

dω

2π
(1 + nB(ω))

Im ε−1
RPA (ω, q − iη)

izµ − ǫn′,P+q − ~ω
(A)

Here, nB(ω) =
`
eβ~ω − 1

´−1
is the Bose function, εRPA is the dielectric function in Random

Phase Approximation as discussed in section 4.4. The integrals in (A) can usually only be

evaluated numerically.

Having the complex two-particle self-energy at our disposal, we can now generalize the polarization
function by using medium-modified atom-propagators:

Π
(S)
2 = . (5.4.3)

In this way, self-energy corrections (S) are included. This diagram can be evaluated using the two-
particle spectral function A2 given by

G2 (n, P ; izν) =

∫ ∞

−∞

dω

2π

A2(ω)

izν − ω
. (5.4.4)

In dilute systems, it is appropriate to approximateA2 by a Lorentzian profile,

A2(ω) =
2Γ1

(~ω − E1 −∆1)
2 + Γ2

1

, (5.4.5)

where ∆1 is connected to Re Σ2 and Γ1 to Im Σ2 just as discussed in the context of the single-particle
Green’s function, cf. (4.2.6)-(4.2.9).

Inserting (5.4.4) and proceeding as in the proof of (5.3.3) results in

Π
(S)
2 (q, iωλ) =

∑

nn′P

∫
dω1 dω2

(2π)2
A2 (ω1)A2 (ω2)

g (ω1)− g (ω2)

iωλ − (ω1 − ω2)

∣
∣Γ0

2

∣
∣
2
. (5.4.6)

If we assume sharply peaked Lorentzians for A2, the double integration can be performed and Π
(S)
2

reads

Π
(S)
2 (q, iωλ) =

∑

nn′P

[
g (ǫn,P )− g

(
ǫn′,P+q

)] ∣
∣Γ0

2

∣
∣2

iωλ −
(
ǫn,P + ∆1 − ǫn′,P+q −∆2

)
+ i (Γ1 + Γ2)

, (5.4.7)

where ∆1, ∆2 and Γ1, Γ2 are the Lorentzian parameters for the upper and lower two-particle
Green’s function, respectively.

We do not venture into a further calculation of this expression but comment on its structure as
compared to (5.3.3). ∆1 and ∆2 lead to a shift of the unperturbed transition frequency ωnn′ . Thus,
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5.4 Consistent approximations for the cluster self-energy

the real part of the self-energy is connected to a shift in the transition frequency. On the other hand, the
imaginary part of Σ2, which enters via Γ1 and Γ2, shows up as an additional imaginary contribution in
the denominator, implying a broadening as compared to (5.3.3). In particular, in this approximation,
the broadening is of Lorentzian type. This reflects a result from traditional spectral line theory,
where the total profile is a convolution of a Gaussian Doppler broadening and a Lorentzian
pressure broadening, leading in total to a Voigt profile.

Finally, we have to discuss one further extension of our approach. So far, we have discussed self-energy
corrections to the polarization function, see eq. (5.4.3). It can be shown, that vertex corrections, for
example of the type

= + , (5.4.8)

tend to be as important as self-energy corrections. The underlying general theorem is known as the
Ward-Takahashi identity and is often used in QED, see also section 4.6.

Our final ansatz for the polarization function therefore reads

Π2 (q, iωλ) = = + . (5.4.9)

In total, the polarization function is then given by

Π2(q, ω) = nΛ3
ei

(

1− e−β~ω
)∑

n,n2

∑

n′
1,n′

2

∑

P

Γ0
n1,n′

2
(q)Γ0∗

n2,n′
1
(q)e

−βE0
n1,P

·
〈
n′2
∣
∣ 〈n1| (L (∆ω) + iΓν)−1

∣
∣n′1
〉
|n2〉 (5.4.10)

and

L (∆ω) = ∆ω −
~P~k

M
− k2

2M
− Re {Σi (∆ω)− Σf (∆ω)}

+ iIm {Σi (∆ω) + Σf (∆ω)} , (5.4.11)

where Γν is the vertex function introduced in (5.4.9) as the filled vertex.

In real calculations, the effect of perturbing ions has to be considered as well. While electron collisions
can be treated perturbatively, the effect of ions is hard to be accounted for within perturbation theory.
Especially for stationary ions, a number of neighboring ions will influence the radiating atoms at a
given instant in time. Therefore, models for the ionic microfield are usually taken from outside of a
Green’s functions approach. In particular, for uncorrelated ions, the ionic microfield distribution is
given by the famous Holtzmark distribution. Correlation effects among ions have been included by
Baranger and Mozer, Hooper, and Iglesias et al. (APEX), to name but the most important
approaches.

We will briefly summarize a few applications of this theoretical approach to real systems. The
shift and width of the Hα line of hydrogen (Balmer-α) in dense plasmas has been discussed by
S. Böddeker, S. Günter, A. Könies, L. Hitzschke and H.J. Kunze in [BGK+93], see fig-
ure 3.
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5 Diagram technique

Figure 3: Shift of the Hα line in a plasma with electron density Ne and
temperature Te, from [BGK+93].

The Balmer spectrum has also been measured at smaller densities and temperatures in a well-
stabilized arc plasma. In figure 4, a complete synthetic spectrum as obtained from the Green’s func-
tions approach is compared to the experimental results, see B. Omar et al., [OWGR07].
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Figure 4: Experimentally measured and theoretically calculated spectra of
hydrogen for Ne = 2.2 × 1023 m−3 and T = 13000 K, from [OWGR07]. Self
absorption is taken into account by truncation at the black body radiation
spectrum.

Investigations have also been carried out for laser-produced plasmas. In particular, hydrogen-like car-
bon spectra measured by Wilheim et al. have been analyzed. Figure 5 shows again experimental re-
sults compared to synthetic spectra based on the Green’s functions approach including self-absorption
for optical thick media. The results can be found in S. Sorge et al. [SWR+00].
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Figure 5: Synthetic and measured spectra of a laser-produced carbon
plasma, from [SWR+00].
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6 Synopsis / Outlook

During this lecture, we constructed an apparatus for perturbatively treating real (interacting) quantum
systems with the Hamiltonian

H = T + V (6.1.1)

in thermal equilibrium. We considered the grand canonical ensemble, modelling the contact with a
bath via the temperature T and the chemical potential µ. The ensemble is described by the statistical
operator ̺eq = e−S with the normalization Tr {̺eq} = 1 and given mean values Tr {̺eqH} = U ,
Tr {̺eqN} = Ωn.

The maximum of the mean entropy Tr {̺eq S} at given average energy and particle number is found
as the grand-canonical Gibbs ensemble with

S = lnZ(T,Ω, µ) +
H

kBT
− µ N

kBT
= S(0) + S(1) + S(2) , (6.1.2)

where we used a systematic cluster decomposition with the c-number S(0) = lnZ(T,Ω, µ) (note,
that −kBT lnZ(T,Ω, µ) is the grand canonical potential J = −pΩ), the single particle contribution

S(1) =
∑

k,k′ s
(1)
kk′c

+
k ck′ , that contains the kinetic energy and the chemical potential, and a two-particle

contribution S(2), which contains the interaction.

The entropy is an observable and therefore Hermitean. The single-particle contribution S(1) can
be diagonalized, e.g. by using momentum eigenstates if the system is homogeneous (no external
potential). For this special form of the ideal entropy, all correlation functions can be calculated
using Wicks theorem. The higher order contributions (two-particle S(2) and possibly higher) to
the entropy can be treated by perturbation theory. This way, higher order correlation functions
appear, which can also be calculated using Wicks theorem. Note, that in the case of an exter-
nal potential, where S(1) is not diagonal in momentum representation, we can also diagonalize the
single-particle contribution S(1) by using the solution of the corresponding single-particle Schrödinger
equation.

We showed, how the unperturbed higher-order correlation functions that appear in the perturba-
tion expansion can be evaluated using the Green’s functions technique and its diagrammatic rep-
resentation. An open problem using perturbative expansions is the convergence. To avoid diver-
gences or non-analytic behavior, we had to perform partial summations of the different diagram
classes.

A significant part of correlation effects is already accounted for in the quasi-particle picture, which is a
single-pole approximation to the spectral function. Due to the influence of the background mean-field
and the resulting self-energy contributions, the interacting particles could be treated as ideal particles
with renormalized energies. However, bound particles cannot be described in a mean-field view. We are
able to develop a formalism which considers bound states as new entities on the same level as the “ele-
mentary” particles, the so-called chemical picture, by considering ladder diagrams. This way, we obtain
the correct low-density behavior described by a mass action law.
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6 Synopsis / Outlook

Although we already included bound states into our method corresponding to a chemical picture,
where they were treated as new additional particle species, the inclusion of the cluster formation
process and the correct treatment of their internal structure from fundamental principles can only
be done in our physical picture, that accounts for the composites’ substructure. There, the for-
mation of bound particles at low densities and their dissolution at high densities and temperatures
because of screening and Pauli blocking can be described in a systematic way. Selecting out special
diagram classes, one has to take care for consistency. For instance, since the impact of self-energy
contributions and vertex corrections are of the same magnitude, both have to be considered simulta-
neously.

With the Green’s functions technique, a very detailed description of many-particle-systems in thermal
equilibrium can be performed. Of course, other approaches, such as numerical simulations can be used
to overcome problems of convergence of the perturbation expansion, but numerical solutions have other
shortcomings, such as the finiteness of the simulated system and the impossibility to find analytical
expressions in limiting cases.

Some further extensions of the Green’s functions approach given here, are possible and will be briefly
discussed:

• The approach, shown in this lecture is restricted to systems, that do not show any phase tran-
sition. A perturbative or virial expansion into the region of a phase transition is impossible,
because the thermodynamic properties exhibit discontinuities, that cannot be removed. We have
to allow for inhomogeneous solutions to find the minimum of the free energy. Note, that the
grand canonical ensemble is not equivalent to the canonical one at phase transitions, because
the fluctuations of the particle number density are no longer small, and we have to define the
ensemble appropriately. For the general investigation of phase transitions, we refer to special
courses in this field.

• The description in thermodynamic grand-canonical equilibrium may also become inappropriate
in other cases. For example, Bose-Einstein-condensation cannot be modelled, since T and µ
will not fix the number Ncondensate of particles in the condensate. Due to the pole in the Bose

distribution, the ground state is macroscopically occupied. In addition to T and µ (=0), we
have to fix the total number of particles.

A related problem is the occurrence of quantum condensates in Fermi systems. By introducing
a generalized Gibbs ensemble, for example via

S(1) =
∑

11′
s
(1)
11′a

+
1′a1 +

∑

11′
F

(1)
11′ a

+
1′a

+
1̄

+
∑

11′
F

(1)∗
11′ a1̄a1′ , (6.1.3)

where 1̄ = (−p1,−σ1) denotes contributions of the ’conjugate’ momentum, it is possible, to
account for violated conservation of the particle number. Instead, a ’phase’ of the quantum
condensate appears and in addition to 〈H〉 and 〈N〉, the new order parameter

〈
a+

1′a
+
1̄

〉
and

further Langrange multipliers F
(1)
11′ besides T and µ are implemented.

The additional anomalous terms (F
(1)
11′ a

+
1′a

+
1̄

+c.c.) in S(1) can be removed with a Bogoliubov-
transform, which has the structure

b+ = ua+ + va b = u∗a + v∗a+ (6.1.4)
〈
b+b+

〉
= 0 〈bb〉 = 0 (6.1.5)
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with appropriate u and v, so that S(1) is diagonal in b and only contains contributions ∝
b+b. Thus, an application of the Wick theorem and the diagram technique is possible again.
Some keywords for further studies are: Bardeen-Cooper-Schrieffer theory, gap-equation,
superconductivity, superfluidity, generalized Gibbs-ensemble. It can be shown that below a
critical temperature, stationary solutions are possible for S with non-vanishing pair amplitude

F
(1)
11′ , describing the formation of a quantum condensate.

• Time dependent fluctuations in equilibrium have not been covered until now. As an example,
the propagator

〈
a+

1′(t
′
1)a1(t1)

〉
= Tr

{

̺eq.e
i
~

Ht′1a+
1′e

− i
~

H(t′1−t1)a1e
− i

~
Ht1
}

(6.1.6)

=
∑

mn

∫

dω
e−βǫn

Z
e
i
~

ω(t′1−t1) 〈n| a+
1′ |m〉 〈n| a1 |n〉 δ (ǫn − ǫm − ω) (6.1.7)

=

∫ ∞

−∞

dω

2π
e
i
~

ω(t′1−t1)I1(11′, ω) (6.1.8)

is related to the same spectral function introduced for the Matsubara Green’s function above.
Thus it is the analytical continuation of

〈
a+

1′a1(τ)
〉

via (−τ) → i
~
(t′1 − t1). An important

example are density-density fluctuations 〈̺n(~r1, t1)n(~r2, t2)〉 with n(~r) = a+(~r)a(~r), that are
related to the dynamical structure factor. They are evaluated after transformation to momentum
representation and evaluating the corresponding spectral function or Matsubara Green’s
function (polarization function). Such correlation functions are of interest in transport theory
(linear response theory). One can formulate a microscopic approach of the dynamical structure
factor, the (longitudinal) dielectric function and the absorption coefficient. The time evolution of
equilibrium fluctuations are related to dissipation (keyword: Fluctuation-Dissipation-Theorem).

• A general treatment of the nonequilibrium is possible by extending the approach to equilibrium
sketched above via supplementing the set of relevant observables {Bn} with known averages

〈Bn〉 = Tr {̺rel(t)Bn} . (6.1.9)

The relevant statistical operator is obtained from the maximum of entropy

S = −kB 〈ln ̺rel〉 (6.1.10)

with fixed mean values (constraints) taken into account by Lagrange multipliers λn(t). This
leads to the generalized Gibbs ensemble

̺rel(t) =
1

Zrel(t)
e−

P

n λn(t)Bn . (6.1.11)

The statistical operator is given by Abels theorem

̺(t) = ǫ

∫ t

−∞
dt′ eǫ(t−t′)e−

i
~

H(t−t′)̺rel(t
′)e

i
~

H(t−t′) . (6.1.12)

For further details, we recommend the special course on nonequilibrium statistical physics. Here,
we only mention that in the nonequilibrium case, we have exponents containing the interaction
part of the Hamiltonian, which can also be treated using the methods given here.
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6 Synopsis / Outlook

• Finally, we would like to emphasize, that in addition to many particle physics, the diagram
technique has found its application in many other fields of physics. As the original example, we
will only mention quantum electrodynamics (QED), where the Hamiltonian H =

∫
d3rH is

replaced by the Hamilton density H,

H =
∑

c

φ̄c(~r, t)
(
−i~c~γ · ∇+mcc

2
)
φc(~r, t)

+

[
1

2ε0
~P 2
transv(~r, t) +

ε0c
2

2

(

~∇× ~A(~r, t)
)2
]

+
∑

c

φ̄c(~r, t)
(

−ecc~γ · ~A(~r, t)
)

φc(~r, t)

+
1

2

∑

c,d

∫

d3~r ′ φ†c(~r, t)φ
†
d(~r

′, t)
eced

4πε0 |~r − ~r ′|
φd(~r

′, t)φc(~r, t) (6.1.13)

or, respectively,

H = HDirac
︸ ︷︷ ︸

Electron / Positron

+ HMaxwell
︸ ︷︷ ︸

(transversal) Photon

+ HRadiation
︸ ︷︷ ︸

.+ HCoulomb
︸ ︷︷ ︸

(6.1.14)

The Coulomb part as well as the radiation part can be treated using perturbation theory. The
Feynman diagrams, that are subject to very similar rules as the diagrams given above, have
originally been introduced for this purpose: While during this lecture, we only concentrated on
the Coulomb contribution in a many-body system, an analogous approach is also possible for
the radiation part. However, due to the spinor-character of the wave functions or operators,
respectively, the algebra is much more complicated. Therefore, we recommend a special course
on quantum electrodynamics for further studies in this field.

Although many attempts have been made, a unification of quantum many-body theory and
quantum electrodynamics remains open and is subject of current intense research.
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