The Structure of Language - and More

Helmut Satz
Universität Bielefeld, Germany

Karpacz, Poland
May 20024

Critical Behavior and Power Law Distribution

Recall Ising model on 2-D lattice, $s_{i}= \pm 1$, Hamiltonian

$$
H(s)=J \sum_{i, j=1}^{N} s_{i} s_{j}
$$

correlation function

$$
\Gamma(r)=\sum_{s_{1}} \sum_{s_{2}} \cdots \sum_{s_{N}}\left|r_{i}-r_{j}\right| \exp -\boldsymbol{\beta} \boldsymbol{H}(s)
$$

$r=r_{i}-r_{j} ;$ has Ornstein-Zernicke form

$$
\Gamma(r)=\frac{\exp -(r / \lambda)}{r^{p}}
$$

$\lambda(\beta):$ correlation length at temperature $T=1 / \beta$,
$p=1-\eta \simeq 1$, anomalous dimension parameter $\eta \simeq 0$.
For $T \rightarrow T_{c}$, correlation length λ diverges: $\lambda \sim\left|T-T_{c}\right|^{-\nu}$

$$
\Gamma\left(r, T_{c}\right) \simeq 1 / r
$$

system becomes scale-invariant

$$
\Gamma(k r) / \Gamma(r)=k^{-1} \sim r-i n d e p e n d e n t
$$

critical behavior \rightarrow scale-invariance at the critical point, \Rightarrow power-law behavior \sim indication of criticality.
repeat for percolation

isolated disks
cluster size s distribution $n(s, \rho)$ at density ρ

$$
n(s, \rho) \sim \frac{\exp [-s / \sigma(\rho)]}{s}
$$

with $\sigma(\rho)$ average cluster size at given ρ.
at critical point, largest cluster diverges, $\sigma\left(\rho \rightarrow \rho_{c}\right) \rightarrow \infty$ and

$$
n\left(s, \rho_{c}\right) \sim \frac{1}{s}
$$

power-law distribution of cluster size.
General conclusion:
criticaliy \sim power-law distribution, scale-invariance

Language Structure

Conventional questions about literature texts:

- meaning and aim, style, details on author, etc.

New approach by George K. Zipf (Harvard):

- text is a many-body system, statistical treatment, words are the constituents
what are the most frequently occurring words?
- ranking order $\mathrm{k}=1,2,3, \ldots$ from Wikipedia \& more...; first ten:
in English: the of and to in a is was that for
Zipf's discovery: frequency pattern, with $f($ the $)=f(1)$
$f(o f)=f(2) \simeq f(1) / 2 ; f($ and $)=f(3) \simeq f(1) / 3 ; f($ to $)=f(4) \simeq f(1) / 4$
and so on; in general, power-law: Zipf's law: $f(k) \simeq \frac{f(1)}{k}$

Language Structure

Conventional questions about literature texts:

- meaning and aim, style, details on author, etc.

New approach by George K. Zipf (Harvard):

- text is a many-body system, statistical treatment, words are the constituents
what are the most frequently occurring words?
- ranking order $\mathrm{k}=1,2,3, \ldots$ from Wikipedia \& more...; first ten:
in English: the of and to in a is was that for
Zipf's discovery: frequency pattern, with $f($ the $)=f(1)$
$f(o f)=f(2) \simeq f(1) / 2 ; f($ and $)=f(3) \simeq f(1) / 3 ; f($ to $)=f(4) \simeq f(1) / 4$
and so on; in general, power-law: Zipf's law: $f(k) \simeq \frac{f(1)}{k}$
in Polish: nie to sie na co ze jest do tak jak... in German: der und die in von den mit zu ist für...

Zipf used "Ulysses" by James Joyce; is the law general?
subsequent studies:
\sim all texts in all languages, even

- Esperanto (artificial language)
- Meroitic (undeciphered ancient language)

Conclusion

human languages contain intrinsic power-law distribution of word frequencies;
languages are somehow poised at a critical point

Why?

Many attempts, linguistic, sociological, statistical (monkey typing)....
But:
there are many other instances of such behavior:

- earth quakes (Gutenberg-Richter law)

- city sizes (Auerbach law)
 Source: Statistical Abstract of the United States [1993].
consider a case detached from observation, not relying on "data":
Prime Number Components of Integers
HS: arXiv:2403.12773
$\mathrm{N}=10: 2,3,4=2 \times 2,5,6=2 \times 3,7,8=2 \times 2 \times 2,9=3 \times 3,10=2 \times 5$
$\mathrm{f}(2)=8, \mathrm{f}(3)=3, \mathrm{f}(5)=1, \mathrm{f}(7)=1$
try larger sets: $\mathrm{N}=1-100$ and $\mathrm{N}=900-1000$

p	2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	\ldots	97
$\mathrm{f}(100)$	97	48	24	16	9	7	5	5	4	3	3	2	2	2	2	1	\ldots	1
$\mathrm{f}(1000)$	98	50	25	16	10	6	6	5	2	3	4	3	3	3	2	2	\ldots	1

so far, still empirical: the data look like Zipf.

But here we have

$$
f(N, p)=N\left(1 / p+1 / p^{2}+1 / p^{3}+\ldots\right) \simeq \frac{N}{(p-1)}
$$

so that

$$
\log f(N, p) \simeq \log N-\log (p-1)
$$

for large N and large p we have analytically
derived a Zipf form.

Conclusion

Zipf's law is perhaps the most general known regularity in our world:
earthquakes, sandpiles, city sizes, prime numbers, economics, much more
but in general no derivation.
Pre-Galileo Stage: why do all objects fall at the same rate?

