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Advent of strong interaction:

what happens to strongly interacting matter

as function of temperature and density?

• I. Ya. Pomeranchuk, Doklady Akad. Nauk SSSR 1951:

...the finite size of hadrons implies a density limit to hadronic
matter.

• Ya. B. Zel’dovich, JETP Letters 1959:

...use the equation of state to establish how many different
baryons are really elementary.
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...a pion needs a pion volume to exist...
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...self−similar resonance composition structure...
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The States of Strongly Interacting Matter
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Back to basics: How does the underlying physics

depend on where we are in the phase diagram?



Conventional Basis of Critical Behavior

• confinement/deconfinement ∼ spontaneous Z2/ZN symmetry
breaking McLerran & Svetitsky 1981, Svetitsky & Yaffe 1982

• dynamical mass generation ∼ spontaneous chiral symmetry
breaking Pisarski & Wilczek 1984
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physical point

ms
tri

first order
consider phase structure for µ = 0:

genuine thermal phase transitions

(singularities in partition function)

only for special values of mu,d, ms

but always ∃ “transition region”

with sharp variation of thermal

observables: “rapid cross-over”

How to understand this? What about density?



What is deconfinement?

confinement:

a quark has within a range of about
1 fm one antiquark or two quarks to
form a color singlet
→ low density phenomenon

deconfinement:

a quark has within a range of about
1 fm so many quarks and antiquarks
that pairing becomes meaningless
→ high density phenomenon
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Constituent Structure of Hadronic Matter

T

µ

baryonic matter

mesonic matter

• low µ: with increasing T , mesonic medium of increasing density
mesons attract → resonance formation
mesons are permeable (overlap) → resonances ∼ same size

• low T : with increasing µ, baryonic medium of increasing density
nucleons attract → formation of nuclei
nucleons repel (hard core) → nuclei grow linearly with A



In both cases, ∃ clustering

∃ relation between clustering and critical behavior? Frenkel 1939

Essam & Fisher1963

consider spin systems, e.g., Ising model

• for H = 0,
spontaneous Z2 symmetry breaking → magnetization transition

• but this can be translated into cluster formation and fusion

critical behavior via cluster fusion: percolation ≡

critical behavior via spontaneous symmetry breaking

Fisher 1967, Fortuin & Kasteleyn 1972, Coniglio & Klein 1980

• for H 6= 0, Isakov 1984

partition function is analytic, no thermal critical behavior
but clustering & percolation persists Kertész 1989

∃ geometic critical behavior



In spin systems,

∃ geometric critical behavior
for all values of H;

for H = 0, this can become identical
to thermal critical behavior, with
non-analytic partition function
& Z2 exponents

for H 6= 0, ∃ Kertész line
geometric transition with
singular cluster behavior
& percolation exponents

H

Kertesz  Line

−1

percolation

no
percolation

pT  (H)

c

0
0

oo

T

oo

T

For spin systems,

thermal critical behavior ⊂ geometric critical behavior

Also in QCD? Hadrons have intrinsic size, with increasing density
they form clusters & eventually percolate



Hadron Percolation ∼ Color Deconfinement

Pomeranchuk 1951 Baym 1979, Çelik, Karsch & S. 1980

Recall percolation

• 2-d, with overlap:
lilies on a pond

isolated disks clusters percolation

• 3-d: N spheres of volume Vh in box of volume V , with overlap

increase density n = N/V until largest cluster spans volume:
percolation

critical percolation density np ≃ 0.34/Vh

at n = nP , 30 % of space filled by overlapping spheres,
70 % still empty



how dense is the percolating cluster? Digal, Fortunato & S. 2004

critical cluster density nm ≃ 1.2/Vh

Rh ≃ 0.8 fm ⇒ nm ≃
0.6

fm3 as deconfinement density

so far, cluster constituents were allowed arbitrary overlap

what if they have a hard core?

then ∃ jamming

at high density, constituents

have restricted spatial mobility

∃ jamming transition

with mobility ∼ order parameter Karsch & S. 1980



percolation for spheres of radius R0

with a hard core of radius Rhc = R0/2 Kratky 1988

hard cores tend to prevent dense clusters;

higher density needed to achieve percolating jammed clusters

nb ≃
2.0

V0

=
0.25

Vhc

≃
1.0

fm3 ≃ 6 n0

for the deconfinement density of baryonic matter

NB: additional uniform attractive potential
→ first order thermal transition

∃ two percolation thresholds in strongly interacting matter:

• mesonic matter, full overlap: nm ≃ 0.6/fm3

• baryonic matter, hard core: nb ≃ 1.0/fm3

now apply to determine critical behavior



If interactions are resonance dominated,

interacting medium ≡ ideal resonance gas

Beth & Uhlenbeck 1937; Dashen, Ma & Bernstein 1969

consider ideal resonance gas of all PDG states for M ≤ 2.5 GeV

partition function

ln Z(T, µ, µS, V ) = ln ZM(T, µS, V ) + ln ZB(T, µ, µS, V )

with

ln ZM(T, V, µS) =
∑

mesons i
ln Zi

M(T, V, µS)

ln ZB(T, µ, µS, V ) =
∑

baryons i
ln Zi

B(T, µ, µS, V )

for mesonic and baryonic contributions; enforce S = 0



• low baryon-density limit: percolation of overlapping hadrons

nh(Th, µ) =
ln Z(T, µ, V )

V
= 0.6/fm3

Obtain at µ = 0

Th ≃ 180 MeV

deconfinement temperature

based on hadron percolation
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hadron percolation

baryons included, but hard core effects ignored

slow decrease of transition temperature with µ,
due to associated production



• high baryon-density limit:
percolation/jamming of hard-core baryons

density of pointlike baryons

n0
b =

1

V









∂ T ln ZB(T, µ, V )

∂µ









hard core ⇒ excluded volume
(Van der Waals)

nb =
n0

b

1 + Vhcn0
b

jamming threshold
→ transition line
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combine the two mechanisms:

phase diagram of hadronic matter

• low baryon density:

percolation of overlapping hadrons

clustering ∼ attraction

• high baryon density:

percolation of hard-core baryons

nuclear attraction plus hard-core repulsion → 1st order transition
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baryon percolation

meson percolation

clustering and percolation can provide

a conceptual basis for the limits of hadronic matter

in the QCD phase diagram
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What happens beyond the limits?

There are two roads to deconfinement:

• Increase quark density so that several quarks/antiquarks within
confinement radius → pairing ambiguous or meaningless.

• Increase temperature so much that gluon screening forbids com-
munication between quarks/antiquarks distance r apart.
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Illustration of the second case:
heavy quark correlations

Quarks separated by about 1 fm
no longer “see” each other for T ≥ Tc

mesonic matter:
when quark density is high enough,
gluon screening radius is short enough, so both coincide



baryonic matter?

in hadrons & in hadronic matter ∃ chiral symmetry breaking

⇒ confined quarks acquire effective mass Mq ≃ 300 MeV
effective size Rq ≃ Rh/3 ≃ 0.3 fm

through surrounding gluon cloud

what happens at deconfinement? Possible scenarios:

• plasma of massless quarks and gluons,
ground state shift re physical vacuum → bag pressure B

• plasma of massive “constituent” quarks, all gluon effect in Mq

“effective” quark? ∼ depends on how you look: Shuryak 1988

• short distance, hard probe: bare current quark
(deep inelastic scattering)

• larger distance, softer probe: massive constituent quark
(additive quark model)



Origin of constituent quark mass?
quark polarizes gluon medium → gluon cloud around quark

M q

M q
eff

(r)

r

r00 Rh

Mq ∼ mq + ǫgr
3

where ǫg is the change
in energy density of the gluon field
due to the presence of the quark

QCD:
non-abelian gluon screening
limits “visibility” range to rg

→ energy density of gluon cloud and screening radius
determine “asymptotic” constituent quark mass ∼ gluon cloud

how does this change in a hot deconfined medium?



heavy quark correlation studies: Bielefeld Lattice Group 2002
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screening radius and “mass” of polarization cloud decrease with
increasing temperature

(quenched - i.e. gluon effect)

expect corresponding T dependence of constituent quark mass



M q

r

M

eff

conf0

q

rg

r

T=0

increasing T

with increasing temperature,
constituent quark becomes
smaller and lighter

high temperature, short distance limit → current quark

now consider different T − µ regions:

• µ ≃ 0, T ≃ Tc:

interquark distance ∼ 1 fm and hot gluon medium

⇒ M eff
q ≃ 0



• T ≃ 0, µ ≃ µc:

interquark distance ∼ 1 fm and cold medium, no gluon screening

⇒ M eff
q ≃ Mq

for cold dense matter,
M eff

q → 0 requires
very short interquark distance

intermediate constituent quark
plasma possible for 0.3 < r < 1 fm

Τ

µ
no free gluonsno free gluons

no free quarks

Hadron Gas:

QGP:

free massive quarks

free massless quarks and free gluons

Constituent Quark
Plasma:

Speculative Scenario:

• at small µ and T ≥ Tc, hot gluon medium rules out a constituent
gas phase, direct transition to QGP
(alternative view: hard gluons kg ∼ 3 Tc resolve gluon cloud)

• at large µ ≥ µc and small T , constituent quarks can survive and
form a massive quark plasma between hadronic matter and QGP



in terms of deconfinement
& chiral symmetry:

Τ

symmetry breaking
spontaneous chiral

color confinement

spontaneous chiral
symmetry breaking

color deconfinement
 chiral symmetry restoration

µ

quark deconfinement

in terms of large Nc,
effective degrees of freedom

• hadron gas: deff = 1

• constituent quark plasma: deff = Nc

• quark-gluon plasma: deff = N 2
c

crucial aspect:
∃ an intermediate phase with only quark degrees of freedom
(“quarkyonic”?), gluons make constituent quark mass;

for r < rg, transition to quark-gluon plasma, “gluon liberation”



consider constituent quark plasma:

– massive quarks and (at higher T ) some massive antiquarks

– no gluons

no color confinement, but conventional bound states possible

attractive interaction for

qq → color anti-triplet,
qq̄ → color singlet,

with same functional form
of potential in r, T
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NB: anti-triplet qq bound state = diquark
(genuine two-body state, not Cooper pair)

constituent quark plasma can be structurally similar to hadron gas:

• (antitriplet) diquark and (singlet) qq̄ states

• higher excitations (colored resonance gas)

• also possible: glueballs

• all states have intrinsic finite size (and mass), hence ∃ percolation
limit

Essential prerequisite for “third, intermediate” state:

quark degrees of freedom, gluons only modify quark properties

other alternative: string gas... Miyazawa 1979; Goloviznin & S. 1996



Conclusion

• Three State Phase Diagram (apart from color superconductor)

• Hadronic mattter:
quarks and gluons confined to hadrons, broken chiral symmetry

• Constituent quark plasma:
massive deconfined quarks, broken chiral symmetry

• Quark-gluon plasma:
deconfined massless quarks and gluons, restored chiral symmetry


