The Universality of Critical Behavior

Helmut Satz

Universität Bielefeld, Germany

Karpacz, Poland

May 20024

The Fundamental Problems of Physics

constituents

quarks leptons gluons, photons vector bosons (Z, W^{\pm}) Higgs

forces

strong e-m weak gravitation unification, TOE

elementary interactions

\downarrow complex systems, critical behaviour

states of matter

transitions

solid, liquid, gas glass, gelatine insulator, conductor superconductor, ferromagnet fluid, superfluid thermal phase transitions percolation transitions scaling and renormalization critical exponents universality classes

Complex Systems \Rightarrow **New Direction** in Physics

- Given constituents and dynamics of elementary systems, what is the behaviour of complex systems?
- What are the possible states of matter and how can they be specified?
- How do transitions from one state of matter to another occur?
- Is there a general pattern of critical phenomena, independent of specific dynamics?
- Conceptually new physics: renormalization, self-similarity, selforganization, emergence, sand piles, swarm intelligence, ...

NB: new directions not only in physics

Knowing all there is to know about

the helium atom

the ant

Knowing all there is to know about

the helium atom

the ant

tells you nothing about the behaviour of liquid helium a colony of ants

Knowing all there is to know about

the helium atom

the ant

tells you nothing about the behaviour of liquid helium a colony of ants

 \Rightarrow even a fully unified fundamental theory does not solve the issue of complex systems

Contents

Critical Behavior in Strongly Interacting Matter
The Statistical Mechanics of Swarm Formation
The Statistical Basis of Language