
Emergent U(1) gauge field and
SU(2) symmetry in an Ising magnet

Roderich Moessner

NIST



The physics landscape



The physics landscape



Fundamental questions

What are building blocks and interactions of matter?

⇒ high energy + particle physics

What is the origin of variety and complexity

⇒ many-body theory:
• understand individual phenomena

⇒ ‘applications’

• understand variety as such

⇒ ‘organising principles’



Outline

Spin ice

I history (and material)

I frustration and degeneracy

Emergent Maxwell electromagnetism

I U(1) gauge field from constraint

Strings as degrees of freedom

I Kasteleyn transition in a field
I mapping to quantum problem

I emergent SU(2) symmetry under strain

Gauge fields and strings

I magnetic monopoles and ‘Dirac strings’

I irrational charge



Spin ice compounds Dy/Ho2Ti2O7

� local [111] crystal field ∼ 200 K
⇒ Ising spins σ = ±1

� large classical spins (15/2 and 8)

� large magnetic moment |~µ| ≈ 10µB



Frustration leads to (classical) degeneracy

(exchange+dipolar) interactions minimised by
2-in, 2-out ice rules ⇒ local constraint

Siddharthan+Shastry 1999, Gingras et al. 2000+

six ground states “per
tetrahedron” ⇒ degeneracy

nonzero residual entropy
Sp = ln 2−

∫∞
T0

(C/T )dT
Anderson 1956; Ramirez et al. 1999

Pauling’s estimate: Sp = 1
2 ln 3

2

I discrete version of
Maxwellian constraint
counting



Mapping from ice to spin ice

I In ice, water molecules retain their identity

I Hydrogen near oxygen ↔ spin pointing in

150.69.54.33/takagi/matuhirasan/SpinIce.jpg



Conventional order and disorder

Gas-crystal (e.g. rock salt):

Paramagnet-ferromagnet (e.g. fridge magnet)

In between: critical points

Anything else???



Is spin ice ordered or not? Henley; Huse et al.; Hermele et al.

No order as in ferromagnet

I extensive degeneracy

Not disordered like a paramagnet

I ice rules ⇒ conservation law

Magnetic moments ~µi ⇔ (lattice) ‘flux’

I Ice rules ⇔ ∇ · ~µ = 0 ⇒ ~µ = ∇× ~A

I Local constraint
⇒ emergent gauge structure

→ algebraic spin correlations
→ ‘bow-tie’ structure factor

Effective action: S = (K/2)
∫
d3r |∇ × ~A|2
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Emergent Maxwell electromagnetism + photons

Hilbert space: classical ground states of spin ice

I add quantum dynamics: hexagonal loop resonance

Effective long-wavelength theory: Sq =
∫
~E 2 − ~B2

Maxwell

Coulomb phase of U(1) gauge theory
I gapless photons, speed of

light c2 ∼ t − v

I deconfinement

Emergent electrodynamics with frustrated system as ‘ether’



Disorder vs. spin ice vs. order in neutron scattering



Pinch points in neutron scattering

Isakov, RM, Sondhi 2004

Tom Fennell Fennell+Bramwell et al. 2009



Kasteleyn transition out of full polarisation

Applying [100] field gives polarised
reference configuration

I defect motion → string
I strings execute random walk

transverse to field cf. Chalker

I Zeeman energy per step Ez

I entropy per step ln 2

If strings cannot terminate

I F = L (Ez/T − ln 2)

NO strings at T < Tc = Ez/ ln 2

I strings repel entropically
I continuous onset
I Kasteleyn transition
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Kasteleyn transition

Familiar from other settings

I commensurate/incommensurate transition

I dilute Bose gas



Classical to quantum mapping

Interpret strings as world lines

I field picks out ’imaginary time’ direction

I provides critical theory



Strained spin ice: Ising symmetry

Six ice states split energetically

I 0 and 2 strings degenerate

I Ising symmetry survives

Same energy/entropy argument

I but strings no longer interact
I looks first order

I but is not: ”∞”-order
I all sectors equiprobable
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Emergent SU(2) symmetry

‘Transfer matrix’ from layer to layer in strain direction

I dominant eigenvalue independent of number n of strings

Corresponds to imaginary time Trotterised quantum Hamiltonian

HXXZ = −J
∑

〈ij〉 s
x
i s

x
j + syi s

y
j + ∆szi s

z
j

Phase transition at ∆ = 1
I H’berg: SU(2) symmetry

I transition from Ising to XY
I degeneracy between N + 1 values of Sz

tot

I exhibited by full transfer matrix
I commutes with S±

tot

I many unusual consequences
I soft domain walls: l−1

W ∼
√

1− T/Tc

I ‘random walk’ correlations: C (r , z) = (1/z) exp
[
−r2/(ρz)

]
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Imaging ‘Dirac strings’

⇔

⇒ random walk in 2 dimensions + time

H in the [001] direction



Dirac strings in neutron scattering Morris et al. 2009

Neutrons in fields of order 1T HZB–Tennant group

I compared to random-walk model



Dirac strings in neutron scattering Morris et al. 2009

Neutrons in fields of order 1T HZB–Tennant group

I compared to random-walk model

I tilted field: biased random walk



‘Dirac strings’ and emergent magnetic monopoles

magnetic Coulomb
interaction

E (r) = −µ0

4π

q2
m

r

� qm = 2|~µ|/ad ≈ qD/8000
� deconfined monopoles

[monopoles in H , not B]
flipped spins =

(observable) ‘Dirac string’
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Monopole charge from inverting dipole string

V (r) =
|~µ|
a

∫
Λ
d~r ′ · ~∇ 1

|r − r ′|
= qm

(
1

|r − ra|
− 1

|r − rb|

)

Potential due to a string of dipoles

I same as charges at ends of string

I charge qm = |~µ|/a = moment per unit
length of string

I reversing string of dipoles creates
(tunable irrational) charges

I fractionalisation/deconfinement



Emergent versus intrinsic gauge charge

Emergence of qualitatively new degrees of freedom
is common phenomenon

I low-energy d.o.f. 6= high energy d.o.f.

Here: emergent d.o.f. is gauge field

I bow-ties in neutron scattering

But: we also have high-energy gauge structure

I magnetic dipole moment of spins

I ‘intrinsic’ magnetic charge of monopole

Emergent and intrinsic gauge charges are

I distinct

but mathematically identical

I (partially) independent
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Dimensional reduction of emergent gauge theory

[111] field pins spins in triangular layer
Effective action in d = 2 vs. d = 3:

3d : S = (K/2)
∫
d3r |∇ × ~A|2

2d : S = (K/2)
∫
d2r |∇ × h|2 + λ cos(2πh)

Kadowaki et al. 2009 Fennell et al. 2009

Additional terms permitted in 2d RM+Sondhi 2003

⇒ additional peaks in structure factor
magnetic interaction remains 3d

⇒kagome ice



Single monopole search: Stanford experiment Cabrera 1982

Monopole passes through superconducting ring

⇒ magnetic flux through ring changes

⇒ e.m.f. induced in the ring ⇒ countercurrent ∝ qm is set up

I ‘Works’ for both fundamental cosmic and spin ice monopoles

I signal-noise ratio a problem



Intuitive picture for monopoles

Simplest picture does not work: disconnect monopoles

Next best thing: no string tension between monopoles:

Two monopoles form a dipole:

I connected by tensionless ‘Dirac string’

I Dirac string is observable

⇒ qm ≈ qD/8000 not in conflict with quantisation of e



Loops and strings/worms in the ice model

Corner-sharing square/tetrahedra

I Ising spins as basic d.o.f.

Each square/tetrahedral unit

I two up/two down spins

I realises six-vertex model

Two red and two blue sites each
I strings = alternating red/blue

I emergent gauge flux = spins

I adjacent red (blue) spins form
red (blue) loops

I fully-packed two-color loop
model Kondev+Henley



Statistics of strings in spin ice Jacobsen 90s; Jaubert, Haque, RM 2011

Algebraic length distribution, finite average length (24 vs. 227)
I 2d Kondev vs. 3d are different: two populations in 3d cf. random walk

Different effective descriptions
I 2d critical percolation; 3d Brownian motion

I topological phase!
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Use for numerical simulations Newman+Barkema; Gingras et al; Isakov et al; . . .

Algorithm flips worms – weighted by length of worm

I in d = 3, each MC move flips finite fraction of sample
I can simulate unconventional phase transition very accurately

I log-corrections at upper critical dim. of Kasteleyn transition

t
t0

(
n
n0

)1/2
= 1

ln(n0/n)

(
n
n0

)3/2
− z

z0

Powell, unpub (2012)
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Collective behaviour: magnetic Coulomb liquid

Debye-Hückel theory for low temperatures CMS 2008

I sparse charges without strings

I screening of Coulomb interaction

‘Magnetolyte’ chemistry + ‘magnetricity’ Bramwell et al. 2009

I Wien effect: nonequilibrium response to changing field

I transient magnetic currents in response to field steps

[111] magnetic field = chemical potential CMS 2008

I liquid gas transition

I dimensional reduction to 2d



Specific heat of magnetic Coulomb liquid

I Debye-Hückel
theory of monopole
gas (blue)

(no free parameters!)

I Bethe lattice
calculation (red)

(tuning Jeff to fit the data)

expt by Grigera/Tennant groups 2009



Interacting Coulomb liquid

point-like charged excitations + magnetic Coulomb interaction

(i) interaction strength Γ ∝ (q2
m/〈r〉)/T ∼ exp[−∆/T ]/T

vanishes at high and low T

(ii) [111] magnetic field acts as chemical potential
⇒ can tune 〈r〉 and T separately

~B
⇑



Liquid-gas transition in a [111] field CMS 2008

I first-order transition with critical endpoint Fisher et al.

I observed
experimentally
Sakakibara+Maeno

”unprecedented

in localized

spin systems”

I confirmed
numerically



The Wien effect in a ‘magnetolyte’ Bramwell et al. 2009

Double equilibrium: vacuum ↔ bound monopoles ↔ free monopoles

I applied magnetic field alters bound ↔ free reaction constant Onsager

K (B)

K (0)
' 1 +

µ0Q
3B

8πk2
BT

2

I buffering: vacuum ↔ bound equilibrium unchanged

⇒ free charges increase in field in universal fashion

Expt: magnetic fluctuations/dynamics

Sean Giblin
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From Ising to SU(2)

Emergent gauge field, fractionalisation

I topological physics in d = 3

I Maxwell electrodynamics and photons

I deconfined magnetic monopoles

‘Dirac string’: emergent gauge flux
I topological transitions

I Kasteleyn
I SU(2) symmetry under strain

I tensionless and observable; . . .


