Emergent U(1) gauge field and SU(2) symmetry in an Ising magnet

NIST

The physics landscape

・ロト・「聞・ 《聞・ 《聞・ 《日・

The physics landscape

What are building blocks and interactions of matter? \Rightarrow high energy + particle physics

What is the origin of variety and complexity

- \Rightarrow many-body theory:
 - understand individual phenomena
 - \Rightarrow 'applications'
 - understand variety as such
 - \Rightarrow 'organising principles'

э

Outline

Spin ice

- history (and material)
- frustration and degeneracy

Emergent Maxwell electromagnetism

- ► U(1) gauge field from constraint
- Strings as degrees of freedom
 - Kasteleyn transition in a field
 - mapping to quantum problem
 - emergent SU(2) symmetry under strain

Gauge fields and strings

- magnetic monopoles and 'Dirac strings'
- irrational charge

Geometrical Frustration in the Ferromagnetic Pyrochlore Ho₂Ti₂O₇

M. J. Harris,¹ S. T. Bramwell,² D. F. McMorrow,³ T. Zeiske,⁴ and K. W. Godfrey⁵ ¹SISF scality, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX110QX, University College London, 20 Gordon Street, London, WCIHOAJ, United Kingdom

- Spin ice compounds $Dy/Ho_2Ti_2O_7$ \blacktriangleright local [111] crystal field \sim 200 K
- \Rightarrow Ising spins $\sigma = \pm 1$
- ▶ large classical spins (15/2 and 8)

▶ large magnetic moment $|\vec{\mu}| \approx 10 \, \mu_B$

Frustration leads to (classical) degeneracy

Mapping from ice to spin ice

- In ice, water molecules retain their identity
- Hydrogen near oxygen \leftrightarrow spin pointing in

150.69.54.33/takagi/matuhirasan/SpinIce.jpg

Conventional order and disorder

In between: critical points

Anything else???

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

extensive degeneracy

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

extensive degeneracy

Not disordered like a paramagnet

extensive degeneracy

Not disordered like a paramagnet

• ice rules \Rightarrow conservation law

extensive degeneracy

Not disordered like a paramagnet

• ice rules \Rightarrow conservation law

Magnetic moments $\vec{\mu}_i \Leftrightarrow$ (lattice) 'flux'

- Ice rules $\Leftrightarrow \nabla \cdot \vec{\mu} = 0 \Rightarrow \vec{\mu} = \nabla \times \vec{A}$
- ► Local constraint
 ⇒ emergent gauge structure
 → algebraic spin correlations
 → 'bow-tie' structure factor

Effective action: $S = (K/2) \int d^3r |\nabla \times \vec{A}|^2$

Hilbert space: classical ground states of spin ice

► add quantum dynamics: hexagonal loop resonance

$$H_{\rm RK} = -t \left[\left| \begin{array}{c} & & \\ & &$$

Effective long-wavelength theory: $S_q = \int \vec{E}^2 - \vec{B}^2 \,_{\text{Maxwell}}$ Coulomb phase of U(1) gauge theory

• gapless photons, speed of light $c^2 \sim t - v$

deconfinement

Emergent electrodynamics with frustrated system as 'ether'

Disorder vs. spin ice vs. order in neutron scattering

PMT

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Pinch points in neutron scattering

Tom Fennell

Fennell+Bramwell et al. 2009

◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ○ < ○

Applying [100] field gives polarised reference configuration

- defect motion \rightarrow string
- strings execute random walk transverse to field cf. Chalker
 - Zeeman energy per step E_z
 - entropy per step ln 2

If strings cannot terminate

 $\blacktriangleright \mathcal{F} = L(E_z/T - \ln 2)$

NO strings at $T < T_c = E_z / \ln 2$

Applying [100] field gives polarised reference configuration

- defect motion \rightarrow string
- strings execute random walk transverse to field cf. Chalker
 - Zeeman energy per step E_z
 - entropy per step ln 2

If strings cannot terminate

 $\blacktriangleright \mathcal{F} = L(E_z/T - \ln 2)$

NO strings at $T < T_c = E_z / \ln 2$

Applying [100] field gives polarised reference configuration

- defect motion \rightarrow string
- strings execute random walk transverse to field cf. Chalker
 - Zeeman energy per step E_z
 - entropy per step ln 2

If strings cannot terminate

 $\blacktriangleright \mathcal{F} = L(E_z/T - \ln 2)$

NO strings at $T < T_c = E_z / \ln 2$

Applying [100] field gives polarised reference configuration

- $\blacktriangleright \text{ defect motion} \rightarrow \text{string}$
- strings execute random walk transverse to field cf. Chalker
 - Zeeman energy per step E_z
 - entropy per step ln 2

If strings cannot terminate

 $\blacktriangleright \mathcal{F} = L(E_z/T - \ln 2)$

NO strings at $T < T_c = E_z / \ln 2$

Applying [100] field gives polarised reference configuration

- $\blacktriangleright \text{ defect motion} \rightarrow \text{string}$
- strings execute random walk transverse to field cf. Chalker
 - Zeeman energy per step E_z
 - entropy per step ln 2

If strings cannot terminate

 $\blacktriangleright \mathcal{F} = L(E_z/T - \ln 2)$

NO strings at $T < T_c = E_z / \ln 2$

Applying [100] field gives polarised reference configuration

- $\blacktriangleright \text{ defect motion} \rightarrow \text{string}$
- strings execute random walk transverse to field cf. Chalker
 - Zeeman energy per step E_z
 - entropy per step ln 2

If strings cannot terminate

 $\blacktriangleright \mathcal{F} = L(E_z/T - \ln 2)$

NO strings at $T < T_c = E_z / \ln 2$

Applying [100] field gives polarised reference configuration

- $\blacktriangleright \text{ defect motion} \rightarrow \text{string}$
- strings execute random walk transverse to field cf. Chalker
 - Zeeman energy per step E_z
 - entropy per step ln 2

If strings cannot terminate

 $\blacktriangleright \mathcal{F} = L(E_z/T - \ln 2)$

NO strings at $T < T_c = E_z / \ln 2$

Applying [100] field gives polarised reference configuration

- $\blacktriangleright \text{ defect motion} \rightarrow \text{string}$
- strings execute random walk transverse to field cf. Chalker
 - Zeeman energy per step E_z
 - entropy per step ln 2

If strings cannot terminate

 $\blacktriangleright \mathcal{F} = L(E_z/T - \ln 2)$

NO strings at $T < T_c = E_z / \ln 2$

- strings repel entropically
 - continuous onset
 - Kasteleyn transition

Kasteleyn transition

Familiar from other settings

- commensurate/incommensurate transition
- ► dilute Bose gas

Interpret strings as world lines

- field picks out 'imaginary time' direction
- provides critical theory

Strained spin ice: Ising symmetry

Six ice states split energetically

- ▶ 0 and 2 strings degenerate
- Ising symmetry survives

Strained spin ice: Ising symmetry

 $\ensuremath{\mathsf{Six}}$ ice states split energetically

- ▶ 0 and 2 strings degenerate
- Ising symmetry survives

Same energy/entropy argument

- but strings no longer interact
- looks first order

イロト イポト イヨト イヨト

-

Strained spin ice: Ising symmetry

Six ice states split energetically

- ▶ 0 and 2 strings degenerate
- Ising symmetry survives

Same energy/entropy argument

- but strings no longer interact
- looks first order
 - but is not: " ∞ "-order
 - all sectors equiprobable

▲ロト ▲圖 ト ▲ 画 ト ▲ 画 ト の Q @

'Transfer matrix' from layer to layer in strain direction

dominant eigenvalue independent of number n of strings

Corresponds to imaginary time Trotterised quantum Hamiltonian

 $H_{XXZ} = -J \sum_{\langle ij \rangle} s_i^x s_j^x + s_i^y s_j^y + \Delta s_i^z s_j^z$

'Transfer matrix' from layer to layer in strain direction

dominant eigenvalue independent of number n of strings

Corresponds to imaginary time Trotterised quantum Hamiltonian

$H_{XXZ} = -J \sum_{\langle ij \rangle} s_i^x s_j^x + s_i^y s_j^y + \Delta s_i^z s_j^z$

Phase transition at $\Delta = 1$

- ► H'berg: SU(2) symmetry
 - transition from Ising to XY
 - degeneracy between N + 1 values of S_{tot}^{z}
- exhibited by full transfer matrix
 - commutes with S_{tot}^{\pm}
- many unusual consequences
 - soft domain walls: $I_W^{-1} \sim \sqrt{1 T/T_c}$
 - 'random walk' correlations: $C(r,z) = (1/z) \exp \left[-r^2/(\rho z)\right]$

Imaging 'Dirac strings'

 \Rightarrow random walk in 2 dimensions + time

H in the [001] direction

・ロト ・聞ト ・ヨト ・ヨト

- 2

Dirac strings in neutron scattering Morris et al. 2009

Neutrons in fields of order 1T HZB-Tennant group

compared to random-walk model

Dirac strings in neutron scattering Morris et al. 2009

Neutrons in fields of order $1T_{HZB-Tennant group}$

- compared to random-walk model
- tilted field: biased random walk

'Dirac strings' and emergent magnetic monopoles

'Dirac strings' and emergent magnetic monopoles

'Dirac strings' and emergent magnetic monopoles

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Monopole charge from inverting dipole string

$$V(r) = \frac{|\vec{\mu}|}{a} \int_{\Lambda} d\vec{r'} \cdot \vec{\nabla} \frac{1}{|r-r'|} = q_m \left(\frac{1}{|r-r_a|} - \frac{1}{|r-r_b|} \right)$$

Potential due to a string of dipoles

- same as charges at ends of string
- ► charge q_m = |µ|/a = moment per unit length of string
- reversing string of dipoles creates (tunable irrational) charges
- fractionalisation/deconfinement

Emergence of qualitatively new degrees of freedom

- is common phenomenon
 - low-energy d.o.f. \neq high energy d.o.f.

Emergence of qualitatively new degrees of freedom is common phenomenon

• low-energy d.o.f. \neq high energy d.o.f.

Here: emergent d.o.f. is gauge field

bow-ties in neutron scattering

Emergence of qualitatively new degrees of freedom is common phenomenon

• low-energy d.o.f. \neq high energy d.o.f.

Here: emergent d.o.f. is gauge field

- bow-ties in neutron scattering
- But: we also have high-energy gauge structure
 - magnetic dipole moment of spins
 - 'intrinsic' magnetic charge of monopole

Emergence of qualitatively new degrees of freedom is common phenomenon

• low-energy d.o.f. \neq high energy d.o.f.

Here: emergent d.o.f. is gauge field

- bow-ties in neutron scattering
- But: we also have high-energy gauge structure
 - magnetic dipole moment of spins
 - 'intrinsic' magnetic charge of monopole

Emergent and intrinsic gauge charges are

- distinct
- (partially) independent

Emergence of qualitatively new degrees of freedom is common phenomenon

• low-energy d.o.f. \neq high energy d.o.f.

Here: emergent d.o.f. is gauge field

- bow-ties in neutron scattering
- But: we also have high-energy gauge structure
 - magnetic dipole moment of spins
 - 'intrinsic' magnetic charge of monopole

Emergent and intrinsic gauge charges are

- distinct but mathematically identical
- (partially) independent

Dimensional reduction of emergent gauge theory

[111] field pins spins in triangular layer Effective action in d = 2 vs. d = 3: $3d : S = (K/2) \int d^3r |\nabla \times \vec{A}|^2$ $2d : S = (K/2) \int d^2r |\nabla \times h|^2 + \lambda \cos(2\pi h)$

Kadowaki et al. 2009Fennell et al. 2009Additional terms permitted in $2d_{RM+Sondhi 2003}$ \Rightarrow additional peaks in structure factor
magnetic interaction remains 3d

 \Rightarrow kagome ice

Monopole passes through superconducting ring

- \Rightarrow magnetic flux through ring changes
- \Rightarrow e.m.f. induced in the ring \Rightarrow countercurrent $\propto q_m$ is set up

'Works' for both fundamental cosmic and spin ice monopoles

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

signal-noise ratio a problem

Intuitive picture for monopoles

- connected by tensionless 'Dirac string'
- Dirac string is observable

 $\Rightarrow q_m pprox q_D/8000$ not in conflict with quantisation of e

Loops and strings/worms in the ice model

Corner-sharing square/tetrahedra

- ► Ising spins as basic d.o.f.
- Each square/tetrahedral unit
 - two up/two down spins
 - realises six-vertex model

Two red and two blue sites each

- strings = alternating red/blue
 - emergent gauge flux = spins
- adjacent red (blue) spins form red (blue) loops
 - ► fully-packed two-color loop model Kondev+Henley

Statistics of strings in spin ice Jacobsen 90s; Jaubert, Haque, RM 2011

Algebraic length distribution, finite average length (24 vs. 227)

- ► 2d Kondev VS. 3d are different: two populations in 3d cf. random walk
- Different effective descriptions
 - 2d critical percolation; 3d Brownian motion
 - topological phase!

Use for numerical simulations Newman+Barkema; Gingras et al; Isakov et al; ...

Algorithm flips worms - weighted by length of worm

- in d = 3, each MC move flips finite fraction of sample
- ▶ can simulate unconventional phase transition very accurately
 - log-corrections at upper critical dim. of Kasteleyn transition

Debye-Hückel theory for low temperatures CMS 2008

- sparse charges without strings
- screening of Coulomb interaction
- 'Magnetolyte' chemistry + 'magnetricity' Bramwell et al. 2009
 - ► Wien effect: nonequilibrium response to changing field

- transient magnetic currents in response to field steps
- [111] magnetic field = chemical potential $_{\text{CMS 2008}}$
 - liquid gas transition
 - dimensional reduction to 2d

Specific heat of magnetic Coulomb liquid

- Debye-Hückel theory of monopole gas (blue) (no free parameters!)
- Bethe lattice calculation (red) (tuning J_{eff} to fit the data)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

expt by Grigera/Tennant groups 2009

point-like charged excitations + magnetic Coulomb interaction

- (i) interaction strength $\Gamma \propto (q_m^2/\langle r \rangle)/T \sim \exp[-\Delta/T]/T$ vanishes at high and low T
- (ii) [111] magnetic field acts as chemical potential \Rightarrow can tune $\langle r \rangle$ and T separately

Liquid-gas transition in a [111] field CMS 2008

first-order transition with critical endpoint

Fisher et al.

- observed experimentally Sakakibara+Maeno
 "unprecedented in localized spin systems"
- confirmed numerically

The Wien effect in a 'magnetolyte'

Double equilibrium: vacuum \leftrightarrow bound monopoles \leftrightarrow free monopoles

 \blacktriangleright applied magnetic field alters bound \leftrightarrow free reaction constant $_{\textsc{Onsager}}$

$$rac{\mathcal{K}(B)}{\mathcal{K}(0)}\simeq 1+rac{\mu_0 Q^3 B}{8\pi k_B^2 T^2}$$

► buffering: vacuum ↔ bound equilibrium unchanged

 \Rightarrow free charges increase in field in universal fashion

Expt: magnetic fluctuations/dynamics

Sean Giblin

Collaborators

Coulomb phase:

- C. Castelnovo
- J. Chalker
- K. Gregor
- P. Holdsworth
- S. Isakov
- V. Khemani
- S. Parameswaran
- S. Sondhi

Loops:

- M. Haque
- L. Jaubert
- S. Piatecki
- S. Powell

3D RVB:

- A. F. Albuquerque
- F. Alet
- K. Damle

String expt-HMI:

- S. Grigera
- B. Klemke
- J. Morris
- A. Tennant

Discussions:

- S. Bramwell
- P. Fulde
- P. McClarty
- A. Nahum
- F. Pollmann

A. Sen

Emergent gauge field, fractionalisation

- topological physics in d = 3
- Maxwell electrodynamics and photons
- deconfined magnetic monopoles

'Dirac string': emergent gauge flux

- topological transitions
 - Kasteleyn
 - SU(2) symmetry under strain
- tensionless and observable; ...

