NASA mission Cassini to Saturn. How did

 that planet become the Lord of the Rings?
B. Militzer, W. B. Hubbard, J. Wisdom, R. Dbouk, UC Berkeley

Outline

1. Quadratic Monte Carlo

2. Cassini mission to Saturn

3. Resonances in planetary science?
4. How did Saturn become the Lord of the Rings?
5. New General-Purpose Monte Carlo Method

Monte Carlo Simulations in Physics - Canonical Ensemble

Move particles so that the resulting distributions

$$
P(h) \sim \exp \left(-E(h) / k_{b} T\right)
$$

Monte Carlo Simulations in Physics - Canonical Ensemble

Move particles so that the resulting distributions

$$
P(h) \sim \exp \left(-E(h) / k_{b} T\right)
$$

Here is how the algorithm works:

- The altitude of our one particle is h. Its energy is $E(h)$.
- Propose a new altitude

$$
\begin{aligned}
& \mathrm{h}_{\text {new }}=\mathrm{h}+\text { stepSize } *[\text { RandomNumber }()-0.5] \\
& \mathrm{E}_{\text {new }}=\mathrm{E}\left(\mathrm{~h}_{\text {new }}\right)
\end{aligned}
$$

Monte Carlo Simulations in Physics - Canonical Ensemble

Move particles so that the resulting distributions

$$
P(h) \sim \exp \left(-E(h) / k_{b} T\right)
$$

Here is how the algorithm works:

- The altitude of our one particle is h. Its energy is $E(h)$.
- Propose a new altitude

$$
\begin{aligned}
& \mathrm{h}_{\text {new }}=\mathrm{h}+\text { stepSize } *[\text { RandomNumber }()-0.5] \\
& \mathrm{E}_{\text {new }}=\mathrm{E}\left(\mathrm{~h}_{\text {new }}\right)
\end{aligned}
$$

- If $\left(\mathrm{E}_{\text {new }}<\mathrm{E}\right) \rightarrow$ Always accept this move. (Always go downhill in energy.)

- If $\left(E_{\text {new }}>E\right) \rightarrow$ Accept this move with probability

$$
\boldsymbol{P}_{\text {accept }}=\frac{\boldsymbol{P}\left(E_{\text {new }}\right)}{\boldsymbol{P}\left(E_{\text {old }}\right)}=\frac{\boldsymbol{\operatorname { e x p }}\left(-E_{\text {new }} / k_{b} T\right)}{\boldsymbol{\operatorname { e x p }}\left(-E_{\text {old }} / k_{b} T\right)}=\boldsymbol{\operatorname { e x p }}\left[-\left(E_{\text {new }}-E_{\text {old }}\right) / k_{b} T\right]
$$

Monte Carlo Simulations in Physics - Ising Spin System

$T \gg T_{C}$

$\mathrm{T} \sim \mathrm{T}_{\mathrm{C}}$

$T \ll T_{C}$

\downarrow						
\downarrow	\downarrow	\downarrow	\uparrow	\downarrow	\downarrow	\downarrow
\downarrow						
\uparrow						
\uparrow						
\uparrow						
\uparrow						

Flip spins to generate a canonical ensemble

$$
P(s) \sim \exp \left(-E(s) / k_{b} T\right)
$$

Apply our QMC method to Dilute Core Models

Parameters of planet model:

- How much helium is in various layers?
- Mass fraction of heavy elements, Z
- Pressures at layer boundaries
- Size of the core
- Entropy in deep interior

Then the gravity coefficients, J_{n}, with CMS

$$
\chi^{2}=\sum_{n}\left(\frac{J_{n}^{\text {Juno }}-J_{n}^{\text {model }}}{\delta J_{n}^{\text {Juno }}}\right)^{2}
$$

$$
\text { Probability } \sim \exp \left\{-\chi^{2} / 2\right\}
$$

Apply our QMC method Dilute Core Models

Apply our QMC method Dilute Core Models

Affine Invariance MCMC by Goodman \& Weare

JONATHAN GOODMAN AND JONATHAN WEARE

Affine Stretch move

$$
g(z) \propto\left\{\begin{array}{cl}
\frac{1}{\sqrt{z}} & \text { if } z \in\left[\frac{1}{a}, a\right] \\
0 & \text { otherwise }
\end{array}\right.
$$

Our Quadratic Monte Carlo Method Explained at http://militzer.berkeley.edu/QMC

Array1 <S> s = SetUpNStates(nWalkers).
for (int iBlock=0; i<nBlocks; iBlock++)
// Set up nWalkers different states of type S
// loop over blocks
// loop over steps
// try moving every walker once per step for (int $i=0 ; i<n W a l k e r s ; i++$)
int j, k;
SelectTwoOtherWalkersAtRandom(i,j,k);
const double $\mathrm{tj}=-1.0$;
const double tk $=+1.0$;
const double ti = SampleT(a); // sample t space
const double tNew $=$ SampleT(a); // sample t space one more time
const double wi = LagrangeInterpolation(tNew,ti,tj,tk);
const double wj = LagrangeInterpolation(tNew,tj,tk,ti);
const double wk = LagrangeInterpolation(tNew,tk,ti,tj);
New lines

S sNew = s[0]; // Create new state by coping over an existing one
for (int $d=0 ; d<n D i m ; d++$) \{
sNew[d] = wi*s[i][d] + wj*s[j][d]+ wk*s[k][d]; // set nDim parameters of new state
\}
if (sNew.Valid()) \{ // check if state sNew is valid before calling Evaluate()
sNew.Evaluate(); // Sets the energy sNew.y which defines the state's probability = exp(-y/temp)
double dy = sNew.y - s[i].y: // difference in energy between new and old state
double prob $=$ pow(fabs(wi),nDim) * $\exp (-d y / t e m p) ; \quad / /$ Note \mid wi|^nDim and Boltzmann factors
bool accept $=$ (prob>Random()); \leqslant Random() returns a single random number between 0 and 1 .
if (accept) \{
for (int $d=0 ; d<n D i m ; d++$) \{
[i][d]
\}
s[i].y = sNew.y; // copy also its energy
$\}$
\}
\} // look over all walkers
ComputeDifferentEnsembleAverages(s);
\} // end of loop over steps
PrintEndOfBlockStatement();
\}
// end of loop over block
PrintEndOfRunStatement();

Our Test Case: A Ring Potential

Test case: Ring potential

$V(\vec{r})=(2 m)^{2 m}\left[(\rho-R)^{2 m}+\sum_{i=3}^{N} r_{i}^{2 m}\right]-C r_{1}$

Two Performance Criteria: Autocorrelation \& Travel Time

- Quadratic moves yield smaller error bars and shorter travel times.
- But don't use too many walkers.
- We suggest
$N_{w}=2 D . . .3 \mathrm{D}$

Planets in our Solar System (not to scale)

2. Resonances

(occur in many different scenarios)

The animation represents a map of the increased count of all known asteroids in the solar system between Jan. 1, 1999 and Jan. 31, 2018. (Blue represents near-Earth asteroids. Orange represents main-belt asteroids between the orbits of Mars and Jupiter.)

Gravitational interactions (orbital resonances) with Jupiter have ejected

 asteroids on certain orbits.

Pluto's \& Neptune's orbit intersect but Pluto will never collide with Neptune because of a 3:2 orbital resonance.

Saturn's Rings

Orbital resonance with moon Mimas made Cassini division

3. How did Saturn become the Lord of the Rings?

What is so Unusual About Planet Saturn?

Cassini Mission to Saturn

My contribution: Modeling Saturn's unusual gravity field

Mission Timeline:

- Launch, October 1997
- Inserted into orbit around Saturn in July 2004
- Burned up in Saturn's atmosphere in 2017

Cassini Mission to Saturn

Mission Timeline:

- Launch, October 1997
- Inserted into orbit around Saturn in July, 2004
- Huygens probe lands on Titan in January, 2005
- Dove inside Saturn's rings in August, 2017
- After 13 years in orbit it burned up in atmosphere in September, 2017

Helioseismology

NASA SOHO

P modes

Helioseismology

Helioseismology

P modes: "Pressure" waves

- Primary restoring force is pressure
- High frequency limit: acoustic waves

F modes: "Fundamental" modes

- Are the limit of p modes as radial order n goes to zero (long wavelength limit)
- Also known as surface gravity wave, no nodes in interior. Deforms like a soccer ball
- No compression involved.

G Modes: "Gravity" waves

- Low frequency waves
- Primary restoring force is buoyancy
- Requires stable stratification, no convection

C. Mancovich, 2019

Saturen

Waves at satellite resonances are well known.

Lindblad resonance: eccentricity; spiral density waves

azimuthal
wavenumber

e.g.,

Goldreich \& Tremaine 1979 Cuzzi, Lissauer, \& Shu 1981 Shu 1984

Splitting of f-Modes implies Stably Stratified Layer

Fuller (2014)

Fuller \& Mankovich (2022): Coupling f and g modes can explain observed splitting of f modes. g modes are caused by stably stratified layer with a nonzero Brunt-Väisälä-Frequency, N. Stratification may be caused by helium rain or core erosion. Unclear which one dominates.

What is so unusual about Planet Saturn?

Gravity field measured
Winds are 9000 km deep.

Preliminary Models Constructed Without Cassini Data

Models match mass, radius, and J_{2} from Jacobson solution. All $\mathrm{J}_{2 n}$ multiplied by 10^{6}.

	Range of Model Predictions assuming Uniform Rotation	
J_{4}	-938.619	-933.187
$\mathrm{~J}_{6}$	80.532	81.737
$\mathrm{~J}_{8}$	-8.950	-8.680
$\mathrm{~J}_{10}$	1.076	1.129
$\mathrm{~J}_{12}$	-0.157	-0.147
$\mathrm{~J}_{14}$	0.0215	0.0234

Puzzling Gravity Data with unusually large $\mathrm{J}_{6}, \mathrm{~J}_{8}$ and J_{10}

Models match mass, radius, and J_{2} from Jacobson solution. All $\mathrm{J}_{2 \mathrm{n}}$ multiplied by 10^{6}.

	Range of Model Predictions assuming Uniform Rotation	Cassini Data Rev 273+274 solution	
J_{4}	-938.619	-933.187	-934.5792
$\mathrm{~J}_{6}$	80.532	81.737	$\mathbf{8 6 . 5 2 1 5}$
$\mathrm{~J}_{8}$	-8.950	-8.680	$-\mathbf{1 4 . 3 7 0 4}$
J_{10}	1.076	1.129	4.9910
$\mathrm{~J}_{12}$	-0.157	-0.147	-0.6670
$\mathrm{~J}_{14}$	0.0215	0.0234	0.5332

The Even Coefficients of Jupiter's Gravity Field,$_{n}$, can be matched with Uniform Rotation Models

The Even Coefficients of Jupiter's Gravity Field,$_{n}$, can be matched with Uniform Rotation Models

Saturn's Gravity is highly unusual, cannot be matched with Uniform Rotation Models

L. less,
B. Militzer, et al.
Science
17 Jan 2019

Bill Hubbard's Thin-Cord Model

Thin cord of mass $1.5 \times 10^{-5} \mathrm{M}_{0}$ added to uniform-rotation model (orange).

Gravity Data can be matched by assuming the observed winds are 10000 km deep and rotation period $\mathrm{P}=10: 33: 34$

What is so unusual about Planet Saturn?

Gravity field measured
Winds are 9000 km deep.

First Determination of Saturn's Ring Mass from Gravity

Directly from the gravity signal, we determined a total mass of the main rings A, B and $\mathrm{C}=$

0.41 ± 0.13 Mimas masses.

(2000 Mimas masses = 1 lunar mass)
(16000 Mimas masses $=1$ Earth mass)
Iess, BM, et al. Science (2019)

First Determination of Saturn's Ring Mass from Gravity

Directly from the gravity signal, we determined a total mass of the main rings A, B and $\mathrm{C}=$

0.41 ± 0.13 Mimas masses.

(2000 Mimas masses = 1 lunar mass)
(16000 Mimas masses $=1$ Earth mass)
Iess, BM , et al.
Science (2019)
An indication that the rings are young, were formed only 10-100 million years ago.

Problem: We were unsure by what mechanism the rings formed recently!!

How did Saturn become the Lord of the Rings?

The Origin of Saturn's Obliquity and Young Rings

Saturn was tilted by a resonance with Neptune that was disrupted when a primordial satellite scattered and formed the rings.

Jack Wisdom, ${ }^{1 *}$ Rola Dbouk, ${ }^{1}$ Burkhard Militzer, ${ }^{2}$ William Hubbard, ${ }^{3}$ Francis Nimmo, ${ }^{4}$ Brynna Downey ${ }^{4}$, Richard French ${ }^{5}$

Science 377, 1285-1289 (2022) 16 September 2022

What is a Cassini State?

Answer: Spin-Orbit Coupling between Planets or Moons

What is a Cassini State?

Rotating Chair Demo

$$
\begin{aligned}
& \overrightarrow{\boldsymbol{L}}=\boldsymbol{m} \overrightarrow{\boldsymbol{v}} \times \overrightarrow{\boldsymbol{r}} \\
& L=I \times \omega \\
& I=\iiint d^{3} r \rho(x, y, z)\left(x^{2}+y^{2}\right)
\end{aligned}
$$

Before: Radius large Angular velocity small

After: Radius small
Angular velocity large

Rotating Solid Sphere of Uniform Density

Moment of inertia of a sphere of uniform density:
$\mathrm{MoI} \equiv \frac{C}{M R_{e}^{2}}=\frac{2}{5}$

Angular momentum

Assuming a uniform angular velocity

$$
\mathrm{J}=\mathrm{I} * \omega \equiv \mathrm{C} * \omega
$$

Moment of Inertia vs Angular Momentum

Moment of inertia definition:
$\mathrm{MoI} \equiv \frac{C}{M R_{e}^{2}}=\frac{2 \pi}{M R_{e}^{2}} \int_{-1}^{+1} d \mu \int_{0}^{R(\mu)} d r r^{2} l^{2} \rho(r, \mu)$
(Cannot be measured!)

Angular momentum definition:

$$
\mathcal{J}_{\text {norm }}^{\mathrm{DR}}=\frac{2 \pi \sqrt{q_{\mathrm{rot}}}}{M R_{e}^{2}} \int_{-1}^{+1} d \mu \int_{0}^{R(\mu)} d r r^{2} l^{2} \rho(r, \mu) \frac{v(r, \mu)}{\bar{v}(l)}
$$

Effective Mol for differentially rotating planets:

$$
\bar{C}^{\mathrm{DR}} / M R_{e}^{2}=\mathcal{J}_{\text {norm }}^{\mathrm{DR}} / \sqrt{q_{\mathrm{rot}}} \quad q_{\mathrm{rot}}=\frac{\omega^{2} R_{e}^{3}}{G M}
$$

We call the difference the between the two the direct effect of differential rotation on moment of inertia. The direct is very small:

- For Jupiter we calculated $+0.0015 \%$ (not measurable by Juno)
- For Saturn, we calculated -0.13%. (potentially measurable by Juno-type mission) But there is a much larger indirect effect. See B. Militzer, W. B. Hubbard, Planet. Sci. J. 4 (2023) 95

Demo

Precession Demo 1+2

Demo

Spin-Orbit Coupling

This Saturn in Resonance with Neptune? This depends on Saturn's Angular Momentum

This Saturn in Resonance with Neptune? This depends on Saturn's Angular Momentum

This Saturn in Resonance with Neptune? This depends on Saturn's Angular Momentum

Saturn Models with DR that Match J_{2}, J_{4}, and J_{6} predict a Smaller MOI than Models Without DR

B. Militzer, W. B. Hubbard, "Relation of Gravity,
Winds, and the Moment of Inertia of Jupiter and Saturn",
Planet. Sci. J. 4 (2023) 95

This Saturn in Resonance with Neptune? This depends on Saturn's Angular Momentum

Our scenario for the formation of Saturn's rings

1. The Saturnian system formed with an additional moon, Chrysalis. Saturn's spin axis was perpendicular to its orbital plane.
2. Chrysalis gave Neptune an extra "handle" to tilt Saturn's spin axis (via a spin-orbit resonance) to the large value that we see today, 27°.
3. Saturn's moon Titan started to migrate out. About 160 million years ago, it entered into a resonance with the moon Chrysalis destabilizing its orbit.
4. As a result, Chrysalis came so close to Saturn that it was sheared apart by Saturn's intense gravity (tidal disruption). Most of the material fell into Saturn but out of 1%, the rings formed.
5. With Chrysalis gone, Neptune could no longer change Saturn's spin axis. So the planet was left spinning at an angle of 27°.

Our scenario for the formation of Saturn's rings is supported by the following lines of evidence:

1. It predicts a young age for Saturn's rings of only 100 million years approximately. This is in agreement with the ring color and Cassini's measurements of the ring mass.
2. It explains why Saturn's spin axis is tilted rather than being vertical, which it was when the planet formed.
3. It also explains why Saturn's moment of inertia is so close to the critical value to be in a spin-orbit resonance with Neptune but just outside of the critical region.
4. It is consistent with Titan's observed migration and offers an explanation why its orbit is slightly elliptical.

Take-Away Points

1. Saturn's rings are young, only 100 millions years old. Enjoy while the last (about another 100 Ma)
2. They formed from an early moon that encountered a grazing impact on Saturn.
3. Neptune tilted Saturn's spin axis.

For manuscripts on planets and ab initio simulations see http://militzer.berkeley.edu

