Path Integral Monte Carlo Simulations of Warm Dense Matter

Plan for L5, L9, L12 and T1 \& T3

L5: Path integral Monte Carlo (PIMC) simulations and First Principles Equation of state (FPEOS) database

L9: NASA mission Juno to Jupiter, dilute core
T1: "Build that Planet" with SPH method L12: NASA mission Cassini to Saturn. How did that planet become the Lord of the Rings?
T3: FPEOS tutorial

Software needed for T1 \& T3

T1: "Built that Planet" with SPH method
Python + Jupyter notebooks (installation on laptop required, for example with Anaconda)
Alternative: use Google Colab (no installation, no animation)
T3: FPEOS tutorial
Requires a C++ compiler for all calculations, uses Python for all graphics.

Outline of lecture 1

- Path integral Monte Carlo (PIMC) method
- Comparison with different experiments
- First Principles Equation of state (FPEOS) database

C(MEC CENTER FOR MATTER UNDER EXTREME CONDITIONS
 enter for atter under xtreme onditions (CMEC)

Study planetary interiors in the laboratory: shock wave experiments

Two-stage gas gun (Livermore) 0.2 Mbar

Nova laser (Livermore) 3.4 Mbar

Z capacitor bank (Sandia) 2 Mbar

National Ignition Facility $\mathbf{7 0 0}$ Mbar

Shock wave measurements determine the Equation of State on the Hugoniot curve

Conservation of mass, momentum and energy yields:

$$
\begin{aligned}
& \rho=\rho_{0} \frac{u_{s}}{u_{s}-u_{p}} \\
& P=P_{0}+\rho_{0} u_{s} u_{p} \\
& E=E_{0}+\frac{1}{2}\left(V_{0}-V\right)\left(P+P_{0}\right)
\end{aligned}
$$

Shock wave measurements determine the Equation of State on the Hugoniot curve

X
Conservation of mass, momentum and energy yields:

$$
\begin{aligned}
& \rho=\rho_{0} \frac{u_{s}}{u_{s}-u_{p}} \\
& P=P_{0}+\rho_{0} u_{s} u_{p} \\
& E=E_{0}+\frac{1}{2}\left(V_{0}-V\right)\left(P+P_{0}\right)
\end{aligned}
$$

Comparison of Simulation Results and Shock Wave experiments of Deuterium

Comparison of Simulation Results and Shock Wave experiments of Deuterium

Comparison of Simulation Results and Shock Wave experiments of Deuterium

Comparison of Simulation Results and Shock Wave experiments of Deuterium

$$
\begin{gathered}
\text { I. } \\
\text { Path Integral } \\
\text { Monte Carlo }
\end{gathered}
$$

Density functional molecular dynamics at lower T

Born-Oppenheimer approx. MD with classical nuclei:

$$
F=m a
$$

Forces derived DFT with electrons in the instantaneous ground state.

Path integral Monte Carlo at high $\mathrm{T}>10^{4} . . .10^{6} \mathrm{~K}$

Starting from Restricted PIMC Simulations of Hydrogen

Equation of State of the Hydrogen Plasma by Path Integral Monte Carlo Simulation

$$
\text { C. Pierleoni, }{ }^{1,2, *} \text { D. M. Ceperley, }{ }^{3} \text { B. Bernu, }{ }^{1} \text { and W. R. Magro }{ }^{3}
$$

Volume 76, Number $8 \quad$ PHYSICAL REVIEW LETTERS $\quad 19$ February 1996

Molecular Dissociation in Hot, Dense Hydrogen
W.R. Magro, ${ }^{1}$ D.M. Ceperley, ${ }^{2}$ C. Pierleoni, ${ }^{3}$ and B. Bernu ${ }^{4}$

Canonical Ensembles: Classical

Boltzmann factor

$$
e^{-E / k_{B} T}
$$

Thermodynamic averages:

$$
Z_{C l}=\sum_{S} e^{-\beta E_{S}}
$$

Canonical Ensembles: Classical Quantum

Boltzmann factor

$$
e^{-E / k_{B} T}
$$

Density matrix

$$
\hat{\rho}=e^{-\beta \hat{\mathrm{H}}}
$$

$$
\begin{aligned}
& \rho\left(R, R^{\prime}, \beta\right)=\langle R| e^{-\beta \hat{\mathrm{H}}}\left|R^{\prime}\right\rangle \\
& \rho\left(R, R^{\prime}, \beta\right)=\sum_{S} e^{-\beta E_{S}} \Psi_{S}^{*}(R) \Psi_{S}\left(R^{\prime}\right)
\end{aligned}
$$

Thermodynamic averages:

$$
Z_{C l}=\sum_{S} e^{-\beta E_{S}}
$$

$$
\begin{aligned}
& Z_{Q}=\operatorname{Tr}[\hat{\rho}]=\int d R\langle R| e^{-\beta \hat{\mathrm{H}}}|R\rangle \\
& \langle\hat{O}\rangle=\frac{\operatorname{Tr}[\hat{O} \hat{\rho}]}{\operatorname{Tr}[\hat{\rho}]}
\end{aligned}
$$

Step 1 towards the path integral Matrix squaring property of the density matrix

Matrix squaring in operator notation:

$$
\hat{\rho}=e^{-\beta \hat{\mathrm{H}}}=\left(e^{-(\beta / 2) \hat{\mathrm{H}}}\right)\left(e^{-(\beta / 2) \hat{\mathrm{H}}}\right), \quad \beta=\frac{1}{k_{B} T}
$$

Matrix squaring in real-space notation:

$$
\langle R| \hat{\rho}\left|R^{\prime}\right\rangle=\int d R_{1}\langle R| e^{-(\beta / 2) \hat{H}}\left|R_{1}\right\rangle\left\langle R_{1}\right| e^{-(\beta / 2) \hat{H}}\left|R^{\prime}\right\rangle
$$

Matrix squaring in matrix notation:

$$
\left[\begin{array}{ccc}
\cdots & R^{\prime} & \ldots \\
R & \ddots & \vdots \\
\cdots & \ldots & \ldots .
\end{array}\right]=\left[\begin{array}{ccc}
\cdots & R_{1} & \ldots \\
R & \ddots & \vdots \\
\cdots & \ldots & \ldots . .
\end{array}\right] *\left[\begin{array}{ccc}
\cdots & R^{\prime} & \ldots \\
R_{1} & \ddots & \vdots \\
\cdots & \ldots & \ldots
\end{array}\right]
$$

Repeat the matrix squaring step

Matrix squaring in operator notation:

$$
\hat{\rho}=e^{-\beta \hat{\mathrm{H}}}=\left(e^{-(\beta / 4) \hat{\mathrm{H}}}\right)^{4}, \beta=\frac{1}{k_{B} T}
$$

Matrix squaring in real-space notation:
$\langle R| \hat{\rho}\left|R^{\prime}\right\rangle=\int d R_{1} \int d R_{2} \int d R_{3}\langle R| e^{-(\beta / 4) \hat{\mathrm{H}}}\left|R_{1}\right\rangle\left\langle R_{1}\right| e^{-(\beta / 4) \hat{\mathrm{H}}}\left|R_{2}\right\rangle\left\langle R_{2}\right| e^{-(\beta / 4) \hat{\mathrm{H}}}\left|R_{3}\right\rangle\left\langle R_{3}\right| e^{-(\beta / 4) \hat{\mathrm{H}}}\left|R^{\prime}\right\rangle$

Path Integrals in Imaginary Time

Every particle is represented by a path, a ring polymer.

$$
\text { Density matrix: } \hat{\rho}=e^{-\beta \hat{\mathrm{H}}}=\left(e^{-\tau \hat{\mathrm{H}}}\right)^{M}, \beta=\frac{1}{k_{B} T}, \tau=\frac{\beta}{M} \quad\langle\hat{O}\rangle=\frac{\operatorname{Tr}[\hat{O} \hat{\rho}]}{\operatorname{Tr}[\hat{\rho}]}
$$

Trotter break-up:

$$
\langle R| \hat{\rho}\left|R^{\prime}\right\rangle=\langle R|\left(e^{-x \hat{t} \hat{t}}\right)^{M}\left|R^{\prime}\right\rangle=\int d R_{1} \ldots \int d R_{M-1}\langle R| e^{-t \hat{f} \hat{t}}\left|R_{1}\right\rangle\left\langle R_{1}\right| e^{-x \hat{f}}\left|R_{2}\right\rangle \ldots\left\langle R_{M-1}\right| e^{-\hat{t h}}\left|R^{\prime}\right\rangle
$$

Path Integrals in Imaginary Time

 Simplest form for the paths' action: primitive approx.Density matrix: $\hat{\rho}=e^{-\beta \hat{H}}=\left(e^{-\tau \hat{H}}\right)^{M}, \beta=\frac{1}{k_{B} T}, \tau=\frac{\beta}{M}$
$\langle\hat{O}\rangle=\frac{\operatorname{Tr}[\hat{O} \hat{\rho}]}{\operatorname{Tr}[\hat{\rho}]}$
Trotter break-up:

Trotter formula:

$$
e^{-\beta(\hat{T}+\hat{V})}=\lim _{M \rightarrow \infty}\left[e^{-\tau \hat{T}} e^{-\tau \hat{V}}\right]^{M}
$$

Path integral and primitive action S:

$\langle R| \hat{\rho}\left|R^{\prime}\right\rangle=\oint_{R \rightarrow R^{\prime}} d R_{e} e^{-S\left[R_{i}\right]}$
$S\left[R_{t}\right]=\sum_{i=1}^{M} \frac{\left(R_{i+1}-R_{i}\right)^{2}}{4 \lambda \tau}+\frac{\tau}{2}\left[V\left(R_{i}\right)+V\left(R_{i+1}\right)\right]$

Path Integrals in Imaginary Time include ZeroPoint Motion and some Tunnelling Effects

$$
\begin{aligned}
& \langle R| \hat{\rho}\left|R^{\prime}\right\rangle=\oint_{R \rightarrow R^{\prime}} d R_{t} e^{-S\left[R_{t}\right]} \\
& S\left[R_{t}\right]=\sum_{i=1}^{M} \frac{\left(R_{i+1}-R_{i}\right)^{2}}{4 \lambda \tau}+\frac{\tau}{2}\left[V\left(R_{i}\right)+V\left(R_{i+1}\right)\right]
\end{aligned}
$$

Path Integrals in Imaginary Time include ZeroPoint Motion and some Tunnelling Effects

$$
\begin{aligned}
& \langle R| \hat{\rho}\left|R^{\prime}\right\rangle=\oint_{R \rightarrow R^{\prime}} d R_{t} e^{-S\left[R_{t}\right]} \\
& S\left[R_{t}\right]=\sum_{i=1}^{M} \frac{\left(R_{i+1}-R_{i}\right)^{2}}{4 \lambda \tau}+\frac{\tau}{2}\left[V\left(R_{i}\right)+V\left(R_{i+1}\right)\right]
\end{aligned}
$$

zero-point energy

tunneling

Path Integrals in Imaginary Time include ZeroPoint Motion and some Tunnelling Effects

$\begin{aligned} & \langle R\| \hat{\rho}\left\|R^{\prime}\right\rangle=\oint_{R-1} d R_{e} e^{-S R} R_{i, l} \\ & S\left[R_{t}\right]=\sum_{i=1}^{m}\left(\frac{\left(R_{i+1}-R_{i}\right)^{2}}{4 \lambda \tau}+\frac{\tau}{2}\left[V\left(R_{i}\right)+V\left(R_{i+1}\right)\right]\right. \end{aligned}$	

Bosonic and Fermionic Density Matrices

Bosonic density matrix:
Sum over all symmetric eigenstates.

$$
\rho_{B}\left(R, R^{\prime}, \beta\right)=\sum_{i} e^{-\beta E_{i}} \Psi_{S}^{[i]^{*}}(R) \Psi_{S}^{[i]}\left(R^{\prime}\right)
$$

Fermionic density matrix:
Sum over all antisymmetric eigenstates.

$$
\rho_{F}\left(R, R^{\prime}, \beta\right)=\sum_{i} e^{-\beta E_{i}} \Psi_{A S}^{[i]^{*}}(R) \Psi_{A S}^{[i]}\left(R^{\prime}\right)
$$

Bosonic and Fermionic Path Integrals

Bosonic density matrix:
Sum over all symmetric eigenstates.

$$
\rho_{B}\left(R, R^{\prime}, \beta\right)=\sum_{i} e^{-\beta E_{i}} \Psi_{S}^{[i]^{*}}(R) \Psi_{S}^{[i]}\left(R^{\prime}\right)
$$

Project out the symmetric states:

$$
\rho_{B}\left(R, R^{\prime}, \beta\right)=\sum_{P}(+1)^{P} \rho_{D}\left(R, P R^{\prime}, \beta\right)
$$

Fermionic density matrix:
Sum over all antisymmetric eigenstates.

$$
\rho_{F}\left(R, R^{\prime}, \beta\right)=\sum_{i} e^{-\beta E_{i}} \Psi_{A S}^{[i]^{*}}(R) \Psi_{A S}^{[i]}\left(R^{\prime}\right)
$$

Project out the antisymmetric states:

$$
\rho_{F}\left(R, R^{\prime}, \beta\right)=\sum_{P}(-1)^{P} \rho_{D}\left(R, P R^{\prime}, \beta\right)
$$

$$
\langle R| \hat{\rho}_{F / B}\left|R^{\prime}\right\rangle=\sum_{P}(\pm 1)^{P} \int d R_{1} \ldots \int d R_{M-1}\langle R| e^{-\tau \hat{\mathrm{H}}}\left|R_{1}\right\rangle \ldots\left\langle R_{M-1}\right| e^{-\tau \hat{\mathrm{H}}}\left|P R^{\prime}\right\rangle
$$

Bosonic and Fermionic Path Integrals

Bosonic density matrix:
Sum over all symmetric eigenstates.
$\rho_{B}\left(R, R^{\prime}, \beta\right)=\sum_{i} e^{-\beta E_{i}} \Psi_{S}^{[i]^{*}}(R) \Psi_{S}^{[i]}\left(R^{\prime}\right)$
Project out the symmetric states:

$$
\rho_{B}\left(R, R^{\prime}, \beta\right)=\sum_{P}(+1)^{P} \rho_{D}\left(R, P R^{\prime}, \beta\right)
$$

Fermionic density matrix:
Sum over all antisymmetric eigenstates.

$$
\rho_{F}\left(R, R^{\prime}, \beta\right)=\sum_{i} e^{-\beta E_{i}} \Psi_{A S}^{[i]^{*}}(R) \Psi_{A S}^{[i]}\left(R^{\prime}\right)
$$

Project out the antisymmetric states:

$$
\rho_{F}\left(R, R^{\prime}, \beta\right)=\sum_{P}(-1)^{P} \rho_{D}\left(R, P R^{\prime}, \beta\right)
$$

$\langle R| \hat{\rho}_{F / B}\left|R^{\prime}\right\rangle=\sum_{P}(\pm 1)^{P} \int d R_{1} \ldots \int d R_{M-1}\langle R| e^{-\tau \hat{\mathrm{H}}}\left|R_{1}\right\rangle \ldots\left\langle R_{M-1}\right| e^{-\tau \hat{\mathrm{H}}}\left|P R^{\prime}\right\rangle$

Bosonic and Fermionic ntegrals

Bosonic density matrix: Sum over all symmetric eigensta \square

n

 $\rho_{B}\left(R, R^{\prime}, \beta\right)=\sum e^{-\beta E_{j} \cdot} \Psi^{\text {b }}$
Project

D:

Restricted PIMC for fermions: How is the restriction applied?

Construct a fermionic trial density matrix in form of a Slater determinant of single-particle density matrices:
$\rho_{T}\left(R, R^{\prime}, \beta\right)=\left|\begin{array}{ccc}\rho\left(r_{1}, r_{1}^{\prime}, \beta\right) & \cdots & \rho\left(r_{1}, r_{N}^{\prime}, \beta\right) \\ \vdots & \ddots & \vdots \\ \rho\left(r_{N}, r_{1}^{\prime}, \beta\right) & \cdots & \rho\left(r_{N}, r_{N}^{\prime}, \beta\right)\end{array}\right|$

Enforce the following nodal condition for all time slices along the paths:

$$
\rho_{T}[R(t), R(0), t]>0
$$

This 3N-dimensional conditions eliminates all negative and some positive contribution to the path \rightarrow Solves the fermion sign problem approx.

Free-particle nodes:

$$
\rho_{0}^{[1]}\left(r, r^{\prime} ; \beta\right)=\sum_{k} e^{-\beta E_{k}} \Psi_{k}(r) \Psi_{k}^{*}\left(r^{\prime}\right)
$$

Fermionic Path Integrals Example: Closed paths of 2 free particles

Distinguishable particles:
Consider path types: NA + NX

Bosons:

Consider path types: NA + NX + PNX
Direct fermions:
Consider path types: NA + NX - PNX

Restricted fermions:
Consider only path type: NA

Molecular Hydrogen

Snapshot from a PIMC simulation with 32 protons and electrons

100\% molecules, weakly interacting

2 protons (pink spheres) and spin-up and one spin-down electron form one H_{2} molecule.

Molecular Hydrogen

Snapshot from a PIMC simulation with 32 protons and electrons

2 protons (pink spheres) and spin-up and one spin-down electron form one H_{2} molecule.

- strongly interacting molecules, close to pressure dissociation
- Electrons are degenerate, partially delocalized
- Electron paths are permuting

Metallic Hydrogen

Snapshot from a PIMC simulation with 32 protons and electrons

Free protons (pink spheres) and delocalized electrons.

- Pressure dissociation, free protons
- Degenerate electron gas
- High number of permutations

Silicates: MgSiO_{3}

MgSiO_{3} : Principal Hugoniot Curve

Gonzalez, Soubiran, Peterson, Militzer, Phys. Rev. B 101 (2020) 024107

MgSiO_{3} : Principal Hugoniot Curve

MgSiO_{3} : Principal Hugoniot Curve

Gonzalez,
Soubiran,
Peterson,
Militzer,
Phys. Rev. B
101 (2020)
024107

CH plastics

Inertial confinement fusion experiments with plastic coated spheres of liquid \mathbf{H}_{2}

(Graphics: Bachmann et al. LLNL)

PIMC and DFT-MD simulations performed for $\mathrm{C}_{2} \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}_{2} \mathrm{H}_{3}, \mathrm{CH}_{3}$ and CH_{4}.

All calculations performed on
 $\underset{\text { sustained petascale computing }}{\boldsymbol{\sim}}$

CH Shock Hugoniot Curves: Comparison of Theory and Experiments

CH Shock Hugoniot Curves: Comparison of Theory and Experiments

CH Shock Hugoniot Curves: Comparison of Theory and Experiments

CH Shock Hugoniot Curves: Comparison of Theory and Experiments

Hugoniot Curves of BN and $\mathrm{B}_{4} \mathrm{C}$ Fully interacting EOS and Linear Mixing agree quite well.

Hugoniot Curves of BN and $\mathrm{B}_{4} \mathrm{C}$ Fully interacting EOS and Linear Mixing agree quite well.

Linear Mixing at Constant P and T (Also called additive volume rule)

$$
\begin{aligned}
V_{\operatorname{mix}} & =N_{1} V_{1}+N_{2} V_{2} \\
m_{\operatorname{mix}} & =N_{1} m_{1}+N_{2} m_{2} \\
E_{\operatorname{mix}} & =N_{1} E_{1}+N_{2} E_{2} \\
\rho_{\operatorname{mix}} & =m_{\operatorname{mix}} / V_{\operatorname{mix}}
\end{aligned}
$$

Hugoniot Curves of MgO and MgSiO_{3} Results from fully interacting EOS and experiment.

Hugoniot Curves of MgO and MgSiO_{3} Fully interacting EOS and Linear Mixing agree quite well.

Linear mixing works well for $T \gtrsim 2 \times 10^{5} \mathrm{~K}$ and $\varrho / \varrho_{0} \gtrsim 3.2$

The Journal of Chemical Physics

Nonideal mixing effects in warm dense matter studied with first-principles computer simulations

Cite as: J. Chem. Phys. 153, 184101 (2020); doi: 10.1063/5.0023232
Submitted: 28 July 2020 • Accepted: 25 October 2020 •
Published Online: 9 November 2020
Burkhard Militzer, ${ }^{1,2, a)}$ (D) Felipe González-Cataldo, ${ }^{1}$ (D) Shuai Zhang, ${ }^{3}$ (D) Heather D. Whitley, ${ }^{4}$ (D) Damian C. Swift, ${ }^{4}$
and Marius Millot ${ }^{4}$

Nonlinear Mixing Effects in MgSiO_{3} Fully interacting EOS and Linear Mixing agree quite well.

Linear mixing works well for $T \gtrsim 2 \times 10^{5} \mathrm{~K}$ and $\varrho / \varrho_{0} \gtrsim 3.2$

Hugoniot Curves of CO and CO_{2} Experimental CO_{2} Hugoniot agree with Linear Mixing result

Hugoniot Curves of $\mathrm{H}_{2} \mathrm{O}_{,} \mathrm{H}_{2} \mathrm{O}_{2}$, and $\mathrm{Al}_{2} \mathrm{O}_{3}$ Experimental $\mathrm{H}_{2} \mathrm{O}$ Hugoniot agree with Linear Mixing result

Material	Number of isochores	Minimum density [$\mathrm{g} \mathrm{cm}^{-3}$]	Maximum density [$\mathrm{g} \mathrm{cm}^{-3}$]	Minimum temperature [K]	Maximum temperature [K]	Number of EOS points	References
Hydrogen	33	0.001	798.913	15625	6.400×10^{7}	401	[69-74]
Helium	9	0.387	10.457	500	2.048×10^{9}	228	[75, 76]
Boron	16	0.247	49.303	2000	5.174×10^{8}	314	[77]
Carbon	9	0.100	25.832	5000	1.035×10^{9}	162	[78, 79]
Nitrogen	17	1.500	13.946	1000	1.035×10^{9}	234	[80]
Oxygen	6	2.486	100.019	10000	1.035×10^{9}	76	[81]
Neon	4	0.895	15.026	1000	1.035×10^{9}	67	[82]
Sodium	9	1.933	11.600	1000	1.293×10^{8}	193	[83, 84]
Magnesium	23	0.431	86.110	20000	5.174×10^{8}	371	[85]
Aluminum	15	0.270	32.383	10000	2.156×10^{8}	240	[86]
Silicon	7	2.329	18.632	50000	1.293×10^{8}	85	[87, 88]
LiF	8	2.082	15.701	10000	1.035×10^{9}	91	[89]
$\mathrm{B}_{4} \mathrm{C}$	16	0.251	50.174	2000	5.174×10^{8}	291	[90]
BN	16	0.226	45.161	2000	5.174×10^{8}	311	[91]
CH_{4}	16	0.072	14.376	6736	1.293×10^{8}	247	[92, 93]
CH_{2}	16	0.088	17.598	6736	1.293×10^{8}	248	[92, 93]
$\mathrm{C}_{2} \mathrm{H}_{3}$	16	0.097	19.389	6736	1.293×10^{8}	247	[92, 93]
CH	16	0.105	21.000	6736	1.293×10^{8}	248	[92, 93]
$\mathrm{C}_{2} \mathrm{H}$	16	0.112	22.430	6736	1.293×10^{8}	245	[92,93$]$
MgO	19	0.357	71.397	20000	5.174×10^{8}	286	[94]
$\underline{\mathrm{MgSiO}_{3}}$	16	0.321	64.158	6736	5.174×10^{8}	284	[95, 96]

First-Principles Equation of State Database online http://militzer.berkeley.edu/FPEOS

\author{

- • D° く >
 First-Principles Equation of State (FPEOS) Database for Warm Dense Matter
 Computation
 Authors: B. Militzer, F. Gonzalez-Cataldo, S. Zhang, K. P. Driver, F. Soubiran
 With the goal in mind of making WDM computations more reliable and efficient, we make available our EOS tables for 11 elements and 10 compounds as well as the C++ computer codes for their interpolation. Python code is provided to generate graphs of shock Hugoniot curve, isentropes, isobars, and isotherms for compounds and user-defined mixtures. We put together this first-principles equation of state (FPEOS) database for matter at extreme conditions by combining results from path integral Monte Carlo and density functional molecular dynamics simulations of the elements $\mathrm{H}, \mathrm{He}, \mathrm{B}, \mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{Ne}, \mathrm{Na}, \mathrm{Mg}, \mathrm{Al}$ and Si as well as the compounds $\mathrm{LiF}, \mathrm{B}_{4} \mathrm{C}, \mathrm{BN}, \mathrm{CH}_{4}, \mathrm{CH}_{2}, \mathrm{C}_{2} \mathrm{H}_{3}, \mathrm{CH}, \mathrm{C} 2 \mathrm{H}, \mathrm{MgO}$, and MgSiO_{3}. For all these materials, we provide the pressure and internal energy over a wide density-temperature range from ~ 0.5 to $50 \mathrm{~g} / \mathrm{cc}$ and from $\sim 10^{4}$ to $10^{9} \mathrm{~K}$. This database encompasses the results from approximately 5000 different first-principles simulations. It allows one to compute isobars, adiabats, and shock Hugoniot curves in the regime of L and K shell ionization. Invoking the linear mixing approximation, one can study the properties of user-defined mixtures at high density and temperature.
 Recommended citation: B. Militzer, F. Gonzalez-Cataldo, S. Zhang, K. P. Driver, F. Soubiran, "First-Principles Equation of State Database for Warm Dense Matter Computation", Physical Review E 103 (2021) 013203.
}

5000 first-principles calculations have been combined into our FPEOS database. So anyone can predict shock Hugoniot curves for a variety of compounds and mixtures. This will make warm dense matter calculations more reliable and efficient.

NIF Gbar Experiment: Equations of State of C-O Mixtures in White Dwarf Stars

PI: D. Saumon (LANL), Blouin, Glenzer, Swift, Kritcher, Doppner, Whitley, Lazicki, Falcone, Militzer
We propose to make EOS measurements along the Hugoniot with the Gbar platform of carbon-oxygen rich materials that resemble conditions in White Dwarf stars.

Glyoxal $\mathrm{C}_{2} \mathrm{O}_{2} \mathrm{H}_{2}$

Glyoxal $\mathrm{C}_{2} \mathrm{O}_{2} \mathrm{H}_{2}$
Acetic acid $\mathrm{C}_{2} \mathrm{O}_{2} \mathrm{H}_{4}$ comp:~/fpeos> fpeos binaryMixture EOS1=6 2.0 EOS2=16 2.0 rho0 $=1.049 \mathrm{E} 0=-229.0$

FPEOS

demo

The End

