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Becker and Döring calculated the nucleation rate of a liquid drop in a supersaturated,
dilute gas. It is based on the accretion of molecules by a drop of critical size,
meaning that a smaller drop will evaporate while a larger drop will grow.

I = 1
2
n14πR

2
∗ exp (−∆F∗/T )

∑
j

sj v̄jnj

(
Pj

njπT

)1/2

The sum is over all molecules where j = 1 is a monomer, j = 2 is a dimer, and so
on. The mean speeds are v̄j , the mean densities are nj , and the partial pressures are
Pj . The sj are phenomenological sticking factors ranging from 0 to 1. The cost in
free energy to form a critical sized droplet is ∆F∗.

The most important factor is the exponential which is a recurring component of all
nucleation theories. Note also the factor of the surface area 4πR2

∗. In contrast, when
the growth rate is dominated by dissipation, which is the ability to dissipate energy
away from the bubble or droplet, the prefactor has only one power of R∗.
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The general theory of nucleation developed by Langer. It starts with the introduction
of a set of variables ηi, i = 1, ..., N , which describe N degrees of freedom of the
system of interest. Oftentimes it is convenient to take these to be collective
coordinates. The rate

I = I0 exp(−∆F/T )

gives the number of critical size droplets created in unit volume in unit time. The
activation energy ∆F is given by

∆F = F{η̄} − F{η0}

Here the η0 represent the initial metastable phase while the η̄ represent the saddle
point. The prefactor I0 is the product of two terms

I0 =
κ

2π
Ω0

the dynamical prefactor κ (of dimension 1/time) and the statistical prefactor Ω0 (of
dimension 1/length3).

3 / 27



In terms of the eigenvalues λ̄α and λ
(0)
α of the matrix

∂2F{η}
∂ηi∂ηj

evaluated at points {η̄} and {η0}, respectively, the statistical prefactor can be written
as

Ω0 = V
(
2πT

|λ̄1|

)1/2 N∏
α=α0+2

(
2πT

λ̄α

)1/2 N∏
α=1

(
λ
(0)
α

2πT

)1/2

where V is the volume of the η-space available for the flux of probability flow. There
is just one negative eigenvalue λ̄1. There is one zero eigenvalue for each translation
invariant degree of freedom.
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The dynamical prefactor has been calculated by Langer and Turski and by Kawasaki
for a liquid-gas phase transition near the critical point, where the gas is not dilute, to
be

κ =
2λσT

ℓ2n2
ℓR

3
∗

which involves the radius of the critical size droplet R∗, the thermal conductivity λ,
the surface free energy σ, the latent heat per molecule ℓ and the density of molecules
in the liquid phase nℓ.

The interesting physics in this expression is the appearance of the thermal
conductivity. In order for the droplet to grow beyond the critical size latent heat must
be conducted away from the surface into the gas. For a relativistic system of particles
or quantum fields which has no net conserved charge, such as baryon number, the
thermal conductivity vanishes. The reason is that there is no rest frame defined by the
baryon density to refer to heat transport. Hence this formula obviously cannot be
applied to such systems.
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Csernai and I generalized the result of Langer, Turski, and Kawasaki to a relativistic
system with zero net charge of all types. In this case temperature is the controlling
variable. However, extrapolation in energy density ϵ away from the equilibrium
states is necessary to describe the metastable states and find the parameters of the
critical sized bubble. Before going into details here is the answer for nucleation of a
hadronic bubble in the quark–gluon plasma.

I =
4

π

( σ

3T

)3/2 σ(ζH + 4ηH/3)R∗

ξ4H(∆w)2
exp(−∆F/T )

The ηH and ζH are the shear and bulk viscosities which are to be evaluated in the
hadronic phase. The correlation length in the hadronic phase is ξH. The discontinuity
in the enthalpy density (latent heat) between the two phases is ∆w.
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We choose as our basic variables the local energy density and momentum density
fields ϵ(x, t) and M(x, t). For relativisitic matter the pressure P is not assumed
small compared to energy density ϵ. However, it is assumed that the flow of matter v
is much smaller than c (using units where c = 1). The free energy F consists of a
kinetic energy FK and an interaction term FI . The kinetic term is

FK(ϵ,M) =
1

2

∫
d3x wv 2 =

∫
d3x

M2

2w

We shall assume that FI is a functional of ϵ only, and that it can be written in the form

FI{ϵ(x)} =

∫
d3x

[
1

2
K(∇ϵ)2 + f(ϵ)

]
where f(ϵ) is the Helmholtz free energy density and 1

2
K(∇ϵ)2 is the usual gradient

energy. The K is a constant to be determined. In this discussion we assume that the
temperature T is constant.
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Parametrize f(ϵ) by a fourth order polynomial in ϵ.

f(ϵ) = f0 +
f ′′
0 (ϵ− ϵ0)

2

2
− (ϵL + ϵH − 2ϵ0)f

′′
0

3(ϵL − ϵ0)(ϵH − ϵ0)
(ϵ− ϵ0)

3

+
f ′′
0

4(ϵL − ϵ0)(ϵH − ϵ0)
(ϵ− ϵ0)

4

where ϵL(T ), ϵH(T ), PL(T ) and PH(T ) are specified functions of T , and f ′′
0 is the

curvature of f at the top of the barrier located at ϵ0 (f ′′
0 < 0).
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Define ∆ϵ ≡ ϵH − ϵL > 0 and ∆P ≡ PL − PH. In terms of these variables

ϵ0 =
ϵL + ϵH

2
+

f ′′
0 (∆ϵ)3

12∆P
±

[(
f ′′
0 (∆ϵ)3

12∆P

)2

+
(∆ϵ)2

4

]1/2
where the + (−) is chosen when ∆P > 0 (∆P < 0) and

f0 = −PH +
f ′′
0

12

(ϵH − ϵ0)
2(ϵH − 2ϵL + ϵ0)

(ϵL − ϵ0)

The stationary point {η̄} is given by v(x) = 0 and ϵ(x) = ϵ̄(x), where ϵ̄ satisfies

δFI

δϵ̄(r)
= −K∇2ϵ̄+

∂f

∂ϵ̄
= 0

For a spherical bubble of L phase surrounded by H phase at T < Tc the energy
density ϵ̄ depends only on the distance r from the center of the bubble. Deep inside
the bubble the energy density should be ϵL; far away from the bubble the energy
density should be ϵH. The energy density profile ϵ̄(r) then describes a smooth
transition from one phase to the other. We assume that the surface is located at a
distance R from the center which is much greater than the surface thickness.
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Introduce a correlation length defined at the top of the barrier by ξ20 ≡ −K/f ′′
0 . Then

d2ϵ̄

dr2
+

2

r

dϵ̄

dr
+

(ϵ̄− ϵ0)(ϵ̄− ϵL)(ϵ̄− ϵH)

ξ20(ϵL − ϵ0)(ϵH − ϵ0)
= 0

Let us find the behavior of the solution in each of three regions.

In the interior

ϵ̄(r) = A0 +
A1

r
sinh

(
r

ξL

)
≈ ϵL ξ2L =

ϵH − ϵ0
ϵH − ϵL

ξ20

In the vicinity of the surface

ϵ̄(r) = ϵ0 +
A2

r
sin

(
r −R

ξ0

)

In the exterior

ϵ̄(r) = ϵH − A3

r
exp (−r/ξH) ξ2H =

ϵ0 − ϵL
ϵH − ϵL

ξ20
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At the critical temperature f(ϵL) = f(ϵH). Then the free energy becomes
symmetric, ϵ0 = (ϵL + ϵH)/2 and ξ2H = ξ2L = ξ20/2. In this case the interfacial
profile has a nice analytical solution in the planar (R → ∞) limit:

ϵ̄(z) =
1

2

[
ϵL + ϵH +∆ϵ tanh

(
z

2ξH

)]
Here the surface is located at z = 0 with L phase on the left and H phase on the right.

Suppose that an L phase bubble has formed in the H phase at T < Tc because of
statistical fluctuations. The change in free energy of the system is

∆F =
4π

3
(fL − fH)R

3 + 4πR2σ

where σ is the surface free energy. For baryon free matter

∆F =
4π

3
[PH(T )− PL(T )]R

3 + 4πR2σ

The hadronic droplet is stationary if ∂R∆F = 0, which leads to Laplace’s formula

PL(T )− PH(T ) =
2σ

R(T )
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Thus the activation energy, in our approximation, is

∆F =
4

3
πσR2

The surface free energy can be calculated from our parametrization of FI . For a
planar interface or for a sphere whose radius is much greater than its surface
thickness the formula was given by Cahn and Hilliard.

σ = K

∫ ∞

−∞
dx

(
dϵ̄

dx

)2

Inserting the solution for the planar interface at Tc, this integral takes the form

σ = K

(
∆ϵ

2

)2
1

2ξH

∫ ∞

−∞
dz

1

cosh4(z)
=

K(∆ϵ)2

6ξH
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Now let’s find the statistical prefactor. The λ
(0)
α are eigenvalues of the operator

δ2FI

δϵ(x)δϵ(x ′)

∣∣∣∣
e=ϵH

=

(
−K∇2 +

∂2f

∂ϵ2H

)
δ(x− x ′)

By ∂2f/∂ϵ2H we mean the second derivative of f with respect to ϵ at fixed
temperature evaluated in the equilibrium H phase. This is a measure of fluctuations in
the system. The eigenfunctions are plane waves, with wave vectors q and eigenvalues

λ(0)
q = Kq 2 +

∂2f

∂ϵ2H

At the saddle point, ϵ(x) = ϵ̄(r), the operator

δ2FI

δϵ(x)δϵ(x ′)

∣∣∣∣
e=ϵ̄(r)

=

(
−K∇2 +

∂2f

∂ϵ̄2

)
δ(x− x ′)

is no longer translationally invariant because of the r dependence of ϵ̄. As has been
discussed by Langer, the resulting spherically symmetric Schrödinger-like eigenvalue
equation has an s-wave ground state with a radial eigenfunction proportional to
dϵ̄/dr and a negative eigenvalue

λ̄1 ≈ −2K/R2 (1)

This eigenstate is associated with the instability of the critical bubble against uniform
expansions or contractions.
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The next states are the three p-waves, with eigenvalues λ̄ = 0, which occur because
of the broken translational symmetry. Then there are higher-order partial waves with
positive λ̄ corresponding to volume-conserving deformations of the shape of the
droplet. Finally, there is a continuum of nonlocalized eigenfunctions of starting at
λ̄ = ∂2f/∂ϵ2H. These eigenfunctions are similar to the states associated with the λ(0)

in that they describe fluctuations in the bulk plasma, but here these fluctuations are
perturbed by the presence of the bubble. This leaves four unpaired λ(0)’s at the
bottom of the spectrum which are not accounted for by the matching. Specifically,
we have

lim
V →∞

4∏
β=1

(
λ
(0)
β

2πT

)1/2

=

(
1

2πT

∂2f

∂ϵ2H

)2

remaining as the sole explicit contribution from the complicated products over the α.

The formula for V , the volume of η space available for the flux of probability flow,
has been given by Langer.

V = V

[
1

3

∫
dr(∇ϵ̄)2

]3/2
= V

[
4πR2σ

3K

]3/2
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The resulting expression for Ω0 is

Ω0 = V

(
4πR2σ

3 K

)3/2 (
πTR2

K

)1/2 (
1

2πT

∂2f

∂ϵ2H

)2

Identifying the correlation length ξH in the H phase by

1

K

∂2f

∂ϵ2H
=

1

ξ2H

we can write

Ω0 =
2

3
√
3

( σ
T

)3/2( R

ξH

)4

V

If one considers the nucleation rate to be per unit volume then the volume V should
be divided out of the above expression. Usually we mean the rate per unit volume
and so Ω0 will not include the factor V in subsequent discussion.
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We now want to determine the equations of motion of dissipative fluid dynamics for
small deviations about the stationary configuration ϵ(x, t) = ϵ̄(r),v(x, t) = 0. To
that end we write ϵ = ϵ̄(r) + ν(x, t) and v = v(x, t) and linearize the full equations
of motion, including the gradient term FK , in terms of ν and v.

∂tν = −∇ ·M = −∇ · (w̄v)

∂t(w̄v) = ∇ϵ̄
[
−K∇2ν + f ′′ν

]
+∇ [(ζ + 4η/3)∇ · v]

Here and after when we write f , f ′ or f ′′ we intend that they be evaluated at the
stationary configuration, so that they are complicated functions of r. To determine κ
we look for radial perturbations of the form

ν(x, t) = ν(r)eκt

v(x, t) = v(r)r̂eκt

These radial deviations are governed by the equations of motion

κν(r) = − 1

r2
d

dr

[
r2w̄v(r)

]
κw̄v(r) = − dϵ̄

dr

[
−K

(
d2

dr2
+

2

r

d

dr

)
+ f ′′

]
ν(r)+

d

dr

[
(ζ + 4η/3)

1

r2
d

dr

(
r2v(r)

)]
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Eliminating ν(r) using the first equation we obtain a linear, third-order differential
equation for the velocity profile

κ2w̄v(r) = − dϵ̄

dr

[
K

(
d2

dr2
+

2

r

d

dr

)
− f ′′

] [
1

r2
d

dr

(
r2w̄v(r)

)]
+

d

dr

[
κ(ζ + 4η/3)

1

r2
d

dr

(
r2v(r)

)]
Note a constraint which follows from the first equation together with the conditions
that v(r) vanish at the origin and at infinity∫ ∞

0

dr 4πr2ν(r) = 0

In the interior region, from the origin to within a few correlation lengths of the
surface, recall that ϵ̄ is aprroximately constant. We must require that v and v′ vanish
at r = 0. Consequently, the velocity vanishes in the interior of the bubble.

17 / 27



In the exterior region the energy and enthalpy densities approach their equilibrium
values in the bulk H phase. Then the solution with the proper large r behavior is

v(r) = C

(
aH

r
+

1

r2

)
e−aHr

where C is a constant and a2
H = κwH/(ζH + 4ηH/3).

In the region of the surface, r ≈ R, the stationary configuration ϵ̄(r) is varying
rapidly and dϵ̄/dr is nonzero. To good approximation, in the surface region ν(r)
satisfies [

−K∇2 + f ′′] ν(r) = 0

Corrections to this would be second order in the viscosities and it would be
inconsistent to keep them. Given the constraint, and that ν(r) must go to zero at the
origin and at infinity, means the solution to the above equation is

ν(r) ∼ dϵ̄

dr
This implies that in the surface region

v(r) =
D

r2w̄(r)

∫ r

0

dr′r′2
dϵ̄

dr′

where D is a constant. For distances r exceeding the bubble radius R by more than a
few correlation lengths, but less than 2R, this can be integrated to give

v(r) ≈ D∆ϵ

wH

R2

r2
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The energy flux density which must be transported outwards is ∆w dR/dt. Here we
do not distinquish between the difference of energy densities and the difference in
enthalpy densities of the two bulk phases because the pressure difference is small
compared to the energy density differences. This energy flux must be balanced by
that due to dissipation, which is −(ζ + 4η/3)v dv/dr. We evaluate the flow velocity
just outside the surface of the bubble. Accordingly the derivative is
dv/dr ≈ −2v/R. Therefore energy balance gives us the relation

∆w
dR

dt
= 2(ζH + 4ηH/3)

v2

R

The momentum flux density must be equated to the force per unit area which comes
from the Laplace formula

∆w v2 = 2σ

(
1

R∗
− 1

R

)
(2)

Again, the velocity is to be evaluated just outside the surface.
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Using both energy and momentum conservation we can eliminate the velocity and
solve for dR/dt,

dR

dt
=

4(ζH + 4ηH/3)σ(R−R∗)

(∆w)2 R2 R∗

This is a differential equation for R(t) from which we can read off the value of κ via
R−R∗ ∝ eκt. It is

κ =
4σ(ζH + 4ηH/3)

(∆w)2 R3
∗

Venugopalan and Vischer subsequently generalized this result by including nonzero
baryon number and diffusion is a rather different approach using the Kotchine
conditions, which are a generalization of the Rankine-Hugoniot conditions for shock
waves. They found

κ =
2σ[λHT + 2(ζH + 4ηH/3)]

(∆w)2 R3
∗

This is proportional to a linear combination of the three dissipation coefficients. It
reduces to the expression derived here when thermal conduction can be neglected,
and it reduces to the expression of Langer and Turski in the nonrelativistic limit and
when shear and bulk viscosities are small. The physics limiting the growth of a
bubble is the ability to transport energy away from the surface.
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The fully relativistic rate for producing a bubble in the lower density L phase within
the higher density H phase is

I =
2σ

π

( σ

3T

)3/2 λHT + 2(ζH + 4ηH/3)

ξ4H(∆w)2
R∗ exp(−∆F/T )

The formula for the rate for producing a droplet in the higher density H phase within
the lower density L phase is clear.
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A long time ago, not in a galaxy far far away but right here on Earth, it was thought
that the transition between hadron and quarks and gluons was first order. Therefore
Csernai and I worked out what should happen dynamically in a high energy heavy ion
collisions with zero net baryon number using nucleation theory. Although now out of
date, it serves as an example for future calculations. The modelling goes as follows.

The boost invariant hydrodynamic model of Bjorken says that the energy density
evolves as

dϵ

dt
= −w

t

The energy density in the transition region is

ϵ(T ) = h(t)ϵh(T ) + [1− h(t)]ϵq(T )

where h(t) is the volume fraction of the hadronic phase at time t with T the
temperature at that time.

h(t) =

∫ t

tc

dt′I(T (t′))[1− h(t′)]V (t′, t)

The V (t′, t) is the volume of a hadronic bubble which was nucleated at t′ and since
grown to that volume at t.
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Based on numerical hydrodynamical calculations by Miller and Pantano the velocity
of a bubble which slightly exceeds critical size is

v(T ) ≈ 3(1− T/Tc)
3/2

A simple model for bubble growth is

V (t′, t) =
4π

3

[
R∗(T (t

′)) +

∫ t

t′
dt′′v(T (t′′))

]3
The equation of state was a gas of up and down quarks with a bag constant above Tc

and a gas of pions below Tc. The choice of parameters were B1/4 = 235 MeV,
σ = 50 MeV/fm2, η = 14.4T 3, and ξ = 0.7 fm. This gives Tc = 169 MeV and a
large latent heat.

Pq = aT 4 −B

Ph =
3π2

90
T 4
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τ−1
nucleate =

4π

3
R3

∗I
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Conclusion

• Nucleation of critical sized bubbles or droplets in metastable phases has as the most
important factor exp(−∆F/T ).

• Classical nucleation theory should be applicable to the formation of droplets in a
supersaturated gas when the gas is dilute. The prefactor is quadratic in the radius of
the critical sized droplet.

• Nucleation theory based on Langer’s approach should be applicable when the
gaseous phase is not dilute. In that case energy is carried away from the surface due
to viscosity and dissipation to allow the bubble or droplet to grow. The prefactor is
linear in the radius of the critical sized droplet.

• These ideas can be used to calculate the nucleation of black holes at finite
temperature.

• Qantum nucleation of metastable states can be calculated.
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