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Purpose and Goals

• Many model calculations predict the existence of a critical point in the QCD phase
diagram at a value of the chemical potential where current lattice simulations are
unreliable.

• How to combine or merge a critical equation of state with a smooth background is a
long-standing problem in statistical physics with no unique solution.

• Our goal is to construct an equation of state in the same universality class as the
liquid–gas phase transition and the 3D Ising model. It should have parameters which
may be inferred by hydrodynamic modeling of heavy ion collisions in the Beam
Energy Scan II at the Relativistic Heavy Ion Collider or in experiments at other
accelerators.

• Such an equation of state is also needed for modeling neutron star mergers and
closely related to the cold dense matter comprising neutron stars.

• We provide two very different mathematical constructions.
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Relativistic Heavy Ion Collider
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Relativistic Heavy Ion Collider

• The injection energy is 9.8 GeV/nucleon. Gold nuclei can be accelerated up to 100
GeV/nucleon (

√
sNN = 200 GeV).

• The Beam Energy Scan II ran at the injection energy. In addition, the energy was
reduced to 7.3, 5.75, 4.59, and 3.85 GeV/nucleon, a very impressive feat.

• It will take up to 10 years to analyze all of the data.

• There will be future programs at the Facility for Anti-proton and Ion Research
(FAIR) at GSI and at the Japan Proton Accelerator Research Complex (J-PARC-HI).
The status of the Nuclotron-based Ion Collider fAcility (NICA) at the Joint Institute
for Nuclear Reseach (JINR) in Dubna is unknown.
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Statistical Model Fits

Andronic, Braun-Munzinger, and Stachel, Acta Phys. Polon. B (2009)
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Statistical Model Fits

Andronic, Braun-Munzinger, and Stachel, Acta Phys. Polon. B (2009)
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Statistical Model Fits

Andronic, Braun-Munzinger, and Stachel (2009) left panel
Castorina, J. Phys. Conf. Ser. (2016) right panel
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Construction I (JK, Tom Welle, Chris Plumberg)

• Motivated by S-shaped curves in first order phase transitions and the cubic equation

Q±(T, µ) =
{[

(∆2(T ))2 + r2(T, µ)
]1/2 ± r(T, µ)

}k

r(T, µ) =
µ4 − µ4

x(T )

µ4 + µ4
x(T )

∆2(T ) ∼ d±|T/Tc − 1|p for T → T±
c

• Only two exponents k and p

P (T, µ) = PBG(T, µ)R(T, µ)

• For T ≥ Tc

R(T, µ) = 1− a(T )
(√

∆4 + 1 + 1
)k

− a(T )
(√

∆4 + 1− 1
)k

+ a(T )(Q+ +Q−)

• For T ≤ Tc and µ ≤ µx(T )

RH = 1 + a(T )Q−(T, µ)− a(T )
(√

∆4 + 1 + 1
)k

• For T ≤ Tc and µ ≥ µx(T )

RQ = 1 + a(T )Q+(T, µ)− a(T )
(√

∆4 + 1 + 1
)k
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Critical Behavior I (JK, Tom Welle, Chris Plumberg)

• As n → nc along the critical isotherm

P − Pc ∼ sgn(n− nc)|n− nc|δ , δ = 1/(k − 1)

• As t = (T − Tc)/Tc → 0+ the susceptibility and heat capacity are

χB → χ+t−γ , γ = (2− k)p

cV → c+t−α , α = 2− kp

• As t → 0− the susceptibility, heat capacity and density difference along the
coexistence curve are

χB → χ−(−t)−γ

cV → c−(−t)−α

∆n ∼ (−t)β , β = (k − 1)p

• The critical exponents automatically satisfy the known relations α+ 2β + γ = 2
and γ = β(δ − 1).

• Predicts relation between universal ratios of critical amplitudes(
c+

c−

)2−k

= 4

(
χ−

χ+

)k

= 22−k

(
d+

d−

)(2−k)k
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Background Equation of State

The background equation of state uses a switching function to transition smoothly from a hadron resonance
gas, with excluded volume interactions, to a perturbative quark–gluon plasma. Two parameters in the QCD
running coupling, two in the switching function, and an excluded volume parameter are adjusted and fixed by
fitting to lattice QCD at µ = 0.
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Background Equation of State

The background equation of state uses a switching function to transition smoothly from a hadron resonance
gas, with excluded volume interactions, to a perturbative quark–gluon plasma. Two parameters in the QCD
running coupling, two in the switching function, and an excluded volume parameter are adjusted and fixed by
fitting to lattice QCD at µ = 0.

200 400 600 800 1000
T (MeV)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

c2 s

exI

exII

π gas

µ = 0 MeV

lattice data

100 150 200 250 300 350
T (MeV)

0.0

0.1

0.2

0.3

0.4

0.5

χ
µ
µ
/T

2

exI

fit

µ = 0 MeV

HotQCD

Albright, Kapusta, and Young, Phys. Rev. C (2015)
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Illustrative Parameter Choices I (JK, Tom Welle, Chris Plumberg)

• In order to have an inverted U-shaped coexistence curve in the T − n plane, as seen
in the argon and carbon dioxide liquid-gas phase transitions, the function µx(T ) is
determined by R(T, µx(T ))nBG(T, µx(T )) = nc.

• The critical parameters Tc, µc, nc are related by R(Tc, µc)nBG(Tc, µc) = nc.

• 3D Ising model exponents give k = 1.209, p = 1.564 (mean field values are
k = 4/3, p = 3/2). Then ratios of critical amplitudes give d+/d− ≈ 1/3 (mean
field value is d+/d− = 1).

a(T ) = a0 exp(−T/Ta)

∆2(T ) = d+(T/Tc − 1)p exp(−T/Td) T ≥ Tc

∆2(T ) = d−(1− T/Tc)
p exp(−T/Td) T ≤ Tc
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P (T, µ) = PBG(T, µ)R(T, µ) I (JK, TW, CP)

Tc = 100 MeV, µc = 750 MeV, nc ≈ 0.4 fm−3
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Isotherms of Pressure versus Density I (JK, Tom Welle, Chris Plumberg)
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Coexistence Curve I (JK, Tom Welle, Chris Plumberg)

R(T, µx(T ))nBG(T, µx(T )) = nc
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Construction II (JK, Tom Welle)

• Adopt the Schofield parametric scaling equation of state (1969)

temperature
T − Tc

Tc
= R(1− θ2)

magnetization M →
n− nc

nc
= m0R

βθ

magnetic field H →
µ− µc

µc
= h0R

βδh(θ)

h(θ) = θ(1 + h3θ
2 + h5θ

4)

R ≥ 0 and −θ0 ≤ θ ≤ θ0 where h(θ0) = 0 with θ0 > 1

• The pressure must satisfy the condition (∂P/∂µ)T = n implying

P = Pc + [µ(R, θ)− µc]n(R, θ)−m0h0µcncR
2−αg(θ)

where g(θ) is determined by h(θ)

• Critical curve is θ = ±θ0 and critical point is at R = 0

• h3 and h5 are determined by ratio of critical amplitudes

• h0 and m0 are positive parameters
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Pressure and Coexistence Curve II (JK, Tom Welle)

Scaling equation of state only
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Including the Background II (JK, Tom Welle)

• Modify the scaling variables
n− nc

nc
= m0R

βθ

µ− µx(T )

µc
= h0R

βδh(θ)

This maintains the density as the order parameter

• Pressure
P (µ, T ) = PBG(µ, T ) +W (µ, T )P∗(R, θ)

P∗(R, θ) = P0 + h0µcn0R
βδh+m0h0µcn0R

2−α [θh(θ)− g(θ)]

• W (µ, T ) is a window function that suppresses the critical contribution away from
the coexistence curve

• Background is same as before except for use of point hadrons

• In order to have an inverted U-shaped coexistence curve in the T − n plane, as seen
in the argon and carbon dioxide liquid-gas phase transitions, the function µx(T ) is
determined by nBG(µx(T ), T ) = nc − n0.
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θ(T, µ) II (JK, Tom Welle)

Tc = 120 MeV, µc = 750 MeV, nc ≈ 1.3 fm−3
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Pressure and Susceptibility II (JK, Tom Welle)
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Coexistence Curve II (JK, Tom Welle)

nBG(µx(T ), T ) = nc − n0
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Window Function II (JK, Tom Welle)

W (µ, T ) = exp

[
−
(

µ2j−µ2j
x (T )

c∗µ
j
cµj

)2
]{

1− exp[−(t0/t)
2]
}
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Coexistence Curve II (JK, Shensong Wan)

µx(T ) determined by other conditions

24 / 33



Binary Collision Energy Deposition (JK, Aritra De, Mayank Singh)

√
sNN = 200 GeV (left) and

√
sNN = 11.5 GeV (right).
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Dynamics of the Transition in Heavy Ion Collisions (JK, Mayank Singh,
in preparation)

• Nucleation is probably too slow for the Maxwell construction to be used. Spinodal
decomposition is a more general and appropriate approach.

• Helmholtz free energy

F{n(x, t)} =
∫
d3x

[
1
2
K(∇n)2 + f(T, n)

]
≡

∫
d3xf̃(T, n)

• Local chemical potential µ̃ = δF/δn = µ−K∇2n

• Local isotropic pressure P̃ = P −Kn∇2n− 1
2
K(∇n)2

• Entropy density s = −∂f/∂T

• Local energy density ϵ̃ = ϵ+ 1
2
K(∇n)2

• Local enthalpy density w̃ = ϵ̃+ P̃ = w −Kn∇2n

• Surface free energy σ = K
∫∞
−∞ dx

(
dn
dx

)2
= K∆n2

6ξ

• Correlation length ξ2 = 2K
α∆n2

26 / 33



Dynamics of the Transition in Heavy Ion Collisions (JK, Mayank Singh,
in preparation)

• Stress–Energy–Momentum tensor

Tµν = P̃ (uµuν − gµν) + ϵ̃uµuν +K(Dµn)(Dνn)

• Gradient orthogonal to the flow velocity Dµn ≡ ∂µn− uµuα∂αn

• Baryon current Jµ = nuµ + σBTD
µ
(
µ̃
T

)
• Baryon conductivity σB = CB

3T

[
coth

(
µB
T

)
− 3Tn

w

]
n

• Covariant expressions

µ̃ = µ+KD2n

P̃ = P +KnD2n+ 1
2
K(Dµn)(Dµn)

ϵ̃ = ϵ− 1
2
K(Dµn)(Dµn)

w̃ = P̃ + ϵ̃ = Ts+ µ̃n = w +KnD2n
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1+1 Dimensional Non-Boost Invariant Hydrodynamic Flow (JK, Mayank
Singh, in preparation)

• Space–time variables t = τ cosh ξ and z = τ sinh ξ

• Dynamical equations to be solved numerically with some initial conditions

∂ϵ(n,T )
∂τ

+ w(n,T )
τ

+ K
τ2

∂n
∂ξ

∂2n
∂τ∂ξ

− K
τ3 n

∂2n
∂ξ2

= 0

∂
∂τ

(τn)− σBT
τ

∂2

∂ξ2

(
µ̃
T

)
− 1

τ
∂
∂ξ

(σBT )
∂
∂ξ

(
µ̃
T

)
= 0

µ̃ = µ(n, T )− K
τ2

∂2n
∂ξ2

• Challenging to solve due to 4’th order derivatives. 3+1 dimensions even more
challenging!
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1+1 Dimensional Non-Boost Invariant Hydrodynamic Flow (JK, Mayank
Singh, in preparation)
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1+1 Dimensional Non-Boost Invariant Hydrodynamic Flow (JK, Mayank
Singh, in preparation)
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1+1 Dimensional Non-Boost Invariant Hydrodynamic Flow (JK, Mayank
Singh, in preparation)
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Conclusion

• Lattice QCD simulations have shown unequivocally that the transition from
hadrons to quarks and gluons is a crossover when the baryon chemical potential is
zero or small. Using two different constructions, we show how to embed a critical
point in a smooth background equation of state so as to yield the critical exponents
and critical amplitude ratios expected of a transition in the same universality class as
the liquid–gas phase transition and the 3D Ising model.

• Apart from the critical exponents and ratios of critical amplitudes (which are
universal) and Tc and µc, construction I has 4 parameters while construction II has 6.

• The parameters might be inferred by hydrodynamic modeling of heavy ion
collisions in the Beam Energy Scan II at the Relativistic Heavy Ion Collider or in
experiments at other accelerators.

• With more realistic nuclear interactions, the equations of state may be used to
model neutron star mergers.
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DE-SC0020633.
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