

Preliminary Conceptual Design of Proton Charge Radius Experiment 山东大子前沿交叉科学青 **Using Future Muon Beam at CiADS**

Li, Yuan (李远) and Xiong, Weizhi (熊伟志) Shandong University

MIP 2024 at PKU, Beijing 19-22 April 2024

Physical Background

The **Rosenbluth formula**, describing the lepton-proton elastic scattering (one photon exchange):

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \frac{1}{1+\tau} \left[\left(G_E^p(Q^2) \right)^2 + \frac{\tau}{\varepsilon} \left(G_M^p(Q^2) \right)^2 \right]$$

In case of μ -p, the mass of μ can't be neglected:

$$Q^{2} = -(l - l')^{2}, \qquad \tau = \frac{Q^{2}}{4M^{2}}$$
$$\varepsilon = \left[1 - 2(1 + \tau)\frac{2m^{2} - Q^{2}}{4E_{l}E_{l'} - Q^{2}}\right]^{-1}$$

The electric form factor and its Taylor expansion at low Q^2 :

$$G_E^p(Q^2) = 1 - \frac{1}{6} \overline{r_E^{p^2}} Q^2 + \cdots$$

Derivative at low Q^2 limit:

$$\overline{r_E^{p^2}} \equiv -6 \left. \frac{dG_E^p(Q^2)}{dQ^2} \right|_{Q^2=0}$$

Classical Rosenbluth separation:

$$\left(\frac{d\sigma}{d\Omega}\right)_{reduced} = \left(G_M^p(Q^2)\right)^2 + \frac{\varepsilon}{\tau} \left(G_E^p(Q^2)\right)^2$$

Measure at the same Q^2 , different ε to separate the G_E^p and G_M^p , need minimum two beam energies.

Or, fit the cross section:

Parameterized G_E^p and G_M^p in Rosenbluth formula, e.g. rational(1,1):

- Pseudo-data with projected stat. uncertainties
 - $(\mu-p)$ generated based on the Kelly model.
- Fitting algorithm tested by extracting a

consistent result with the input radius(0.863 fm).

Experiment Setup				
3	0cm	• 5 cm long LH2 target with 5 cm diameter	Quantity	Projected Coverage/Value
TOF detector			Beam Momentum	106, 170, 281 MeV/c

Analysis and Simulation

- TOF reso. $(30\sqrt{2} \text{ ps})$ sufficient for PID at
 - But in (c), 3% π will be misidentified as μ . As π 's cross section is bigger than μ , the

Future Work

Other systematic errors need

to study in detail.

More realistic material and

detectors in G4.

- Select and study more appropriate detector types.
- Explore lower Q^2 range.
- Work on e-e, µ-e elastic
- scattering measure.