

J-PARC Muon g-2/EDM

Worksnop on Muon Physics at the Intensity and Precision Frontiers 2024/04/20 Kyushu University (九州大学) Tamaki Yoshicka (吉岡 瑞樹) on behalf of the J-PARC muon g-2/EDM collaboration*

MIP 2024

RCAPP

Present Status of Muon g-2

- 1. New Physics?
- 2. SM calculation is wrong?

MIP 2024

3. Systematics of experiments?

2024/Apr/20

Muon g-2 Theory Initiative Workshop at KEK

https://conference-indico.kek.jp/event/257/

Seventh plenary workshop of the muon g-2 theory initiative

9-13 September 2024 KEK Tsukuba campus Asia/Tokyo timezone

Overview

Participant List

Code of Conduct

Comprehensive discussion by **all the** experts on this topic.

Aiming at updating the white paper (2020) The Seventh Plenary Workshop of the Muon g-2 Theory Initiative will be held at KEK (Tsukuba in Japan) in collaboration with KMI, FIaP, and J-PARC from 9th to 13th of September 2024. We plan to hold the workshop as a full in-person meeting. The anomalous magnetic moment of the Muon (Muon g-2) has received great attention, particularly after the results of Run 1 from the Fermilab E989 experiment were announced, with further updates from Run 2+3. Scrutiny of the prediction in the Standard Model has intensified, including multiple ongoing experimental efforts and theoretical calculations. A new muon g-2 experiment is under preparation at J-PARC. The workshop aims at discussing recent progress on these developments, geared towards preparing an update of the Standard Model prediction for the Muon g-2.

- Starts 9 Sep 2024, 09:00 Ends 13 Sep 2024, 18:00 Asia/Tokyo
- Kohtaroh MIURA Shoji HASHIMOTO Toru lijima Tsutomu MIBE

- KEK Tsukuba campus Kobayashi Hall
 - 1-1 Oho, Tsukuba, JAPAN
- There are no materials yet.

2024/Apr/20

Experimental Principle

- Muon g-2/EDM can be measured from spin precession • of muon in a uniform B-field.
 - Time dependent spin information reconstructed from decay positron energy/momentum.

$$\vec{\omega_a} + \vec{\omega_\eta} = -\frac{e}{m} \left[a_\mu \vec{B} - \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$$

g-2 precession
BNL/FNAL experiment

14m

$$\vec{\omega_{\eta}} = -\frac{e}{m} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$$

$$-\frac{a_{\mu}D}{c} \left(\frac{a_{\mu}}{\gamma^2 - 1} \right) c$$

- Strong focusing by electric field.
- Magic gamma approach to cancel out 2^{nd} term.
 - P = 3.1 GeV/c

 $\overrightarrow{\omega_a} +$

• Muon orbit: $\varphi = 14$ m at B = 1.45 T. 2024/Apr/20

Experimental Principle

- J-PARC Experiment
 - Measurement at E = 0.
 - Muons will be stored by weak focusing B-field.
 - This requires low emittance muon beam and dedicated beam injection scheme.

$$\vec{\omega_a} + \vec{\omega_\eta} = -\frac{e}{m} \left[a_\mu \vec{B} - \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]_{= 0} \mathbf{0}$$

- Measurement at lower muon momentum becomes possible.
- \rightarrow More compact storage region with better uniformity of B-field.
 - P = 0.3 GeV/c, $\phi = 0.66 \text{ m at } B = 3 \text{ T}$
- This leads to the
 - Independent measurement of g-2 to confirm BNL/FNAL result at different systematic uncertainty.
 - Clear separation of g-2 and EDM signal.

Magnetic field

Momentum

Experimental Principle

- J-PARC Experiment
 - Measurement at E = 0.
 - Muons will be stored by weak focusing B-field.
 - This requires low emittance muon beam and dedicated beam injection scheme.

Magnetic field

Momentum

J-PARC Facility (KEK/JAEA)

Neutrino Beam To Kamioka

Main Ring 30 Gold

GeV

chrotron

Hadron Hall

Bird's eye photo in Feb. 2008 2024/Apr/20

MIP 2024

J-PARC Muon Facility in MLF

• <u>MUSE (Muon Science Establishment) in the MLF</u>

J-PARC Muon g-2/EDM Experiment

J-PARC MLF H-line

Measurement of g-2 and EDM with a compact storage magnet (1/20 of previous exp.) with new muon beam by cooling and acceleration.

Construction of facility has been started in 2022

storage

 $\mu^+(210 \text{ MeV})$ Injection

• Aiming for data taking from 2028

Experimental Area

As of Apr. 2024

Surface μ^+ beam at MLF

- MLF H2 beamline
 - Surface μ^+ beam: 4 MeV, 10^8 /s w/ 25 Hz rep.
 - Beam rate: 1.2 $\times 10^8$ muons/s is expected at the Mu production target.
- Beamline extension to H2 area is planned for FY2024 (Budget secured !).
- Acceleration test up to 4 MeV is planned for FY2025 (Budget secured !).

To g-2/EDM

2024/Apr/20

MIP 2024

Extension Building

Muon Cooling

- Low emittance muon beam by reacceleration of thermal muon.
 - ✓ <u>Silica aerogel target</u>: Surface muons stopped, and thermal muoniums emitted.
 - \checkmark Laser ablated aerogel to increase the efficiency.

Thermal muonium ionization by laser
 ✓ Two scheme under consideration.
 ✓ 1S-2P excitation by 122 nm
 2024/A0F/20S-2S excitation by 244 nmuP 2024

Muon Acceleration

- Muon acceleration to 300 MeV/c by dedicated muon LINAC.
- 4 steps acceleration depending on β . L = 40 m in total.

Demonstration of Muon Cooling/Acceleration

- Ultra Slow Muon (USM) production using "real" USM chamber has been tested.
- Demonstration of acceleration to 90 keV of μ^+ using RFQ is currently on-going.

Muon Beam Injection

• 3D spiral injection scheme is adopted for muon injection into the storage magnet.

<u>3D spiral injection (J-PARC E34)</u>

Horizontal injection

Demonstration of Spiral Injection

- Demonstration of 3D spiral injection scheme is on-going in a test setup by using an electron beam.
 - E = 80 keV, B = 80 mT, R = 0.12 m
- <u>First signal</u> from stored electron beam is successfully observed.

2024/Apr/20

Storage Magnet

- A compact superconducting magnet based on MRI technology. - B = 3 T, $\phi = 66$ cm: Good local uniformity is expected ($\Delta B < 0.2$ ppm)
- Local uniformity of 1 ppm is already demonstrated by the MUSEUM magnet.

Superconducting magnet (1.7T)

2024/Apr/20

Positron Tracking Detector

2024/Apr/20

MIP 2024

Positron Tracking Detector

• Production of detector components are on track.

<u>Silicon strip sensor</u> (not seen); in mass production (260/640).

<u>Readout ASIC (SliT128D)</u>; Mass production finished and quality inspection is on-going.

FPGA-based readout board (FRBS) for data/clock communication; prototype is being tested. MS thesis (Okamura, Niigata U) Cooling system and GFRP frame for assembly (not seen).

Flexible printed circuit boards (FPC) for analog signal transfer; Mass production finished.

<u>ASIC boards</u>; Eight ASICs are mounted. Semi-final version has been produced.

• Three types of quarter vane prototypes were produced and tested.

Electronical proto. Mechanical proto. Noise proto.

• Quality inspection of ASIC has completed.

Defect	Number
Appearance defects	3
Abnormal power supply current	23
Slow control failure	4
Defective channels	291
High time walk channels	560
Abnormal analog waveforms	21
No defect	4833
Total	5735

Submitted to NIM (arXiv:2401.11920)

• Operation tests under magnetic field and kicker field were carried out/in preparation.

magnetic field

Operation test will be next month. *Committee 2023*

kicker field

Visible effects was observed. 20

MS thesis (Umebayashi, Kyushu U)

Expected Sensitivity

- Total efficiency of muon: 1.3×10^{-5} .
- <u>Muon g-2</u>
 - Statistical uncertainty: 450 ppb (2 year of data taking)
 - \checkmark Comparable to BNL.
 - Systematic uncertainty: less than 70 ppb.
- <u>Muon EDM</u>
 - > Statistical uncertainty: $1.5 \times 10^{-21} e^{-cm}$.
 - Systematic uncertainty: $0.4 \times 10^{-21} \text{ e} \cdot \text{cm}$.
 - ✓ Mainly from detector mis-alignment

Subsystem	Efficiency	Subsystem	Efficiency
H-line acceptance and trans-	0.16	DAW decay	0.96
mission			
Mu emission	0.0034	DLS transmission	1.00
Laser ionization	0.73	DLS decay	0.99
Metal mesh	0.78	Injection transmission	0.85
Initial acceleration transmis-	0.72	Injection decay	0.99
sion and decay			
RFQ transmission	0.95	Kicker decay	0.93
RFQ decay	0.81	e^+ energy window	0.12
IH transmission	0.99	Detector acceptance of e^+	1.00
IH decay	0.99	Reconstruction efficiency	0.90
DAW transmission	1.00		

Anomalous spin presession (ω_a)		Magnetic field (ω_p)		
Source	Estimation (ppb)	Source	Estimation (ppb)	
Timing shift	< 36	Absolute calibration	25	
Pitch effect	13	Calibration of mapping probe	20	
Electric field	10	Position of mapping probe	45	
Delayed positrons	0.8	Field decay	< 10	
Diffential decay	1.5	Eddy current from kicker	0.1	
Quadratic sum	< 40	Quadratic sum	56	

2024/Apr/20

Schedule and Milestones

JFY	2022	2023	2024	2025	2026	2027	2028 and beyond
KEK Budget							
Surface muon	✓ Beam at H1 are	a	Funding Secured!	Beam at H2 area	1		ning ing
Bldg. and facility		Final design ★	Funding Requested 10	KEK	*	Completion	nissio 1 tak
Muon source	\checkmark Ionization test	@S2		★ Ionization tes	t at H2		Com Data
LINAC			★ 90keV accelei	tion@S2 ★ 4.3 MeV@	≥ H2 ★	★ fabrication comple	210 MeV ete
Injection and storage			★ Completion of electron injection	test		*	muon injection
Storage magnet				★ B-field probe ready		★ Install ★ Shimm	ning done
Detector	V	Quoter vane prote	otype \star I	lass production re	ady	★ Installati	on
DAQ and computing	× 1	grid service open	omputing e start	all DAQ system operation	test Ready		
Analysis			*	Fracking software	e ready Analysis softwar	e ready	

The Collaboration

Summary

- Muon g-2/EDM experiments at J-PARC aims to measure muon g-2/EDM by utilizing
 - Low emittance muon beam stored in a compact region with a uniform Bfield only by weak focusing magnetic field.
- This will be an independent measurement from BNL/FNAL at different systematics.
- Most of the key technology of this experiment are getting ready for realization. Expected data taking from JFY2028.
- After 2 years data taking,
 - Muon g-2 measurement at 450 ppb (stat.), 70 ppb (syst.): statistics comparable to BNL, completely different source of systematics
 - Muon EDM sensitivity at $1.5 \times 10^{-21} e \cdot cm$ (stat.)

Your participation is very welcome !!