

MIP2024 @ PKU

Sensitive Search for the muon EDM with the Frozen-spin Technique

WONG Guan Ming (TDLI), S.Y. Hoh, T. Hu, K.S. Khaw, J.K. Ng, Y. Shang, Y. Takeuchi

on behalf of the muEDM@PSI collaboration

20th April 2024

EDM is interesting to measure

Matter-antimatter asymmetry

Sakharov's condition warrants more CPV

Fundamental particle with EDM violates CP

Violates T & P-symmetry, and by invoking CPT invariance violates CP

- Free from SM backgrounds
 - CKM phase contribution: $d_{\mu} \sim 10^{-42} e \cdot cm$
 - Hadronic long distance contribution: $d_{\mu} \sim 10^{-38} e \cdot cm$ [2]

PRD 89 (2014) 056006 PRL 125 (2020) 241802

- Various BSM models and EFT approaches predicts enhanced EDM
 - EDMs are good probes for BSM physics

Many EDMs, why muon?

Present Landscape of *µ***EDM**

Measuring μ EDM

Measuring μ EDM

 $\sigma(d_{\mu}) \approx 10^{-21} e \mathrm{cm}$

Measuring μ EDM at PSI

Experiment Layout

muEDM Signal

Phased Approach

Phase-I

- Surface muons, p = 28 MeV/c
- Existing, smaller solenoid at PSI (Bore diameter = 200 mm)
- $d_{\mu} = 3 \times 10^{-21} e \cdot cm$ by 2026

	$\pi E1$	$\mu \mathbf{E1}$
Muon flux (μ^+/s)	4×10^{6}	1.2×10^8
Channel transmission	0.03	0.005
Injection efficiency	0.017	0.60
Muon storage rate $(1/s)$	2×10^3	360×10^3
Gamma factor γ	1.04	1.56
e^+ detection rate (1/s)	500	90×10^3
Detections per 200 days	8.64×10^9	1.5×10^{12}
Mean decay asymmetry A	0.3	0.3
Initial polarization P_0	0.95	0.95
Sensitivity in one year $(e \cdot cm)$	$<\!\!3\times10^{-21}$	$< 6 \times 10^{-23}$

Phase-II

- Higher momentum muons, p = 125 MeV/c
- Dedicated solenoid (Bore diameter = 900 mm)
- $d_{\mu} = 6 \times 10^{-23} e \cdot cm$ by 2031

muEDM Phase-I

Muon Injection

- Large phase space at exit of beam collimated by passage through a collimation channel
- Surrogate models along with G4BL to optimize injection
- Storage efficiency $\sim 0.5 \times 10^{-4}$
- Superconducting channels to shield fringe field from storage solenoid

- Fast entrance detector to trigger magnetic pulse kicker
 - Selects muons within storage acceptance phase space
 - Sends fast signal without causing notable multiple scattering

Requirements and challenges

- Thin scintillators (50 μm to 100 μm) to minimise multiple scattering effect
 - Low number of photons to trigger pulse kicker

Timing requirements

 Time delay between trigger and pulse kick, t_{delay}< 150ns

- Prototype fast electronics were designed and tested
- Propagation delay was evaluated at no more than 5 ns

Storage Pulse Kicker

First prototype

- Coil quadrants generating pulsed longitudinal kick to store muons
- Technical requirements: High amplitude, rapid triggering of short duration pulsed magnetic field, with strong tail suppression

Frozen-spin Electric Field

- Radial electric field applied by two concentric electrodes enclosing muon orbit
- Technical requirements:
 - Precise alignment with muon storage plane
 - Heat dissipation
 - Minimal multiple scattering

Strip-segmented AluKapton film approach **suppresses Eddy current damping**, without compromising **electric field uniformity**.

Current approach:

- 25µm Kapton films
- Strip-segmented ~30nm AI coating
- 2mm thickness
- 2.2mm pitch

Positron Detection: EDM Signal

٠

•

•

▲ 0.25 mm

♥ 0.75 mm

Potential Systematic Effects

Real or apparent precessions mimicking the EDM signal

- Real: MDM coupling to EM fields of experimental setup
- Apparent: Variation in detection efficiency

Systematics carefully studied with Geant4 spin tracking simulations

Systematic effect	Constraints	Phase I		
		Expected value	Syst. (×10 ⁻²¹ <i>e</i> ⋅cm)	
Cone shaped electrodes (longitudinal E-field)	Up-down asymmetry in the electrode shape	$\Delta_R < 30 \ \mu { m m}$	0.75	
Residual B-field from kick	Decay time of kicker field	< 50 ns	< 10 ⁻²	
Net current flowing muon orbit area	Wiring of electronics inside the orbit	< 10 mA	< 10 ⁻²	
Longitudinal B-field uniformity	Solenoid alignment	$< 3 \mathrm{mT}$	-	
Resonant geometrical phase accumulation	Misalignment of central axes	$\begin{array}{l} {\rm Pitch} < 1 \ {\rm mrad} \\ {\rm Offset} < 2 \ {\rm mm} \end{array}$	2×10^{-2}	
TOTAL			1.1	

- μ EDM is a strong probe for BSM new physics that complements high energy experimental efforts
- A dedicated, sensitive search for a μ EDM is under development at PSI
- Expect three orders of improvement in sensitivity from current best limit
 - Phase I: $d_{\mu} < 3 \times 10^{-21} \ e \cdot cm$ ~2026
 - Phase II: $d_{\mu} < 6 \times 10^{-23} \ e \cdot cm$ ~2030s
- Optimisation of experimental design undertaken progressively
 - Simulation studies
 - Detector prototypes
- Test beam(s) each year to demonstrate feasibility of necessary technical finesses

Phase-I Commissioning

Growing Collaboration!

M. Giovannozzi CERN: Beams Department, Esplanade des Particules 1, 1211 Meyrin, Switzerland M. Hoferichter

> UB: University of Bern, Bern, Switzerland G. Hiller UD: University of Dortmund, Dortmund, Germany

R. Appleby, I. Bailey CI: Cockcroft Institute, Daresbury, United Kingdom

C. Chavez Barajas, T. Bowcock, J. Price, N. Rompotis, T. Teubner, G. Venanzoni, J. Vossebeld

UL: University of Liverpool, Liverpool, United Kingdom

R Chislett, G. Hesketh **UCL:** University College London, London, United Kingdom

N. Berger, M. Köppel¹, A. Kozlinsky, M. Müller¹, F. Wauters UMK: University of Mainz - Kernphysik, Mainz, Germany

A. Keshavarzi, M. Lancaster $\ensuremath{\mathsf{UM:}}$ University of Manchester, Manchester, United Kingdom

F. Trillaud UNAM: Universidad Nacional Autonma de Mexico, Mexico City, Mexico

> B. Märkisch TUM: Technical University of Munich, Munich, Germany

> > M. Francesconi INFN-N: INFN, Napoli, Italy

A. Baldini, F Cei, M. Chiappini, L. Galli, G. Gallucci, M. Grassi, D. Nicolò, A. Papa, G. Signorelli, A. Venturini¹, B. Vitali¹ INFN-P: INFN and University of Pisa, Pisa, Italy

> G. Cavoto, F. Renga, C. Voena INFN-R: INFN and University of Roma, Roma, Italy

S.Y. Hoh, T. Hu¹, K.S. Khaw, J.K. Ng¹, Y. Shang¹, Y. Takeuchi, G.M. Wong¹, Y. Zeng¹ SJTU: Shanghai Jiao Tong University and Tsung-Dao Lee Institute, Shanghai, China

A. Adelmann, C. Calzolaio, R. Chakraborty, M. Daum, A. Doinaki¹², C. Dutsov, W. Erdmann, D. Höhl,¹², T. Hume,¹², M. Hildebrandt, H. C. Kästli, A. Knecht, K. Z. Michielsen¹², L. Morvaj, D. Reggiani, D. Sanz-Beccera, P. Schmidt-Wellenburg³ **PSI:** Paul Scherrer Institut, Villigen, Switzerland

> K. Kirch⁴ **ETHZ**: ETH Zürich, Switzerland L. Caminada⁴, A. Crivellin⁴

National Natural Science

Foundation of China

NSEC

TDLI

Entrance detector toy mock-up

Entrance detector test bench

TDLI Muon Group contributes primarily in muon detection

- > Detector design with simulation
- > DAQ electronics developments
- **Detector response tests**

< 3 ns delay

New physics search with Flavours

 At colliders one produces many (up to 10¹⁴) heavy quarks or leptons and measures their decays into light flavors

Flavor observables are sensitive to higher energy scales than collider searches

Courtesy Andreas Crivellin

Dipole interactions in EFT: portals to NP

< 25 >

A not so brief history on EDM searches

General limits

*A.Crivellin, M. Hoferichter, PSW PRD 98, 113002 (2018)

- MFV: $|d_{\mu \leftarrow e}^{\text{MFV}}| < 8.5 \times 10^{-28} e \text{cm}$
- Contribution only starts at the 3-loop level* $|d_{\mu\leftarrow e}| < 4 \times 10^{-20} \text{ ecm}$
- Y. Ema et al., PRL128, 131801 (2022) $|d_{\mu}(^{199}\text{Hg})| < 6 \times 10^{-20} \text{ ecm}$ $|d_{\mu}(\text{ThO})| < 2 \times 10^{-20} \text{ ecm}$
- Bennett et al., PRD80, 052008 (2009) $|d_{\mu}| < 1.5 \times 10^{-19} ecm$

Triggers on entrance detector

	Injection, %	Storage, %	Out-of- acceptance, %
Accepted	0.3	100	0
Rejected	99.7	0	100

Detector requirements:

Aperture

Veto & Exit

Gate

Non-storable muons

- Maximising acceptance rate and rejection rate
- Achieve design that maximises one while minimally compromising the other

Muonphilic Dark Matter

PHYSICAL REVIEW D 102, 115018 (2020)

Muon g-2 and EDM experiments as muonic dark matter detectors

Rvan Janish^{1,2} and Harikrishnan Ramani^{1,3,4} ¹Department of Physics, University of California, Berkeley, California 94720, USA ²Theoretical Physics Department, Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA ³Theoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA ⁴Stanford Institute for Theoretical Physics, Stanford University, Stanford, California 94305, USA

Muonic Vector DM

PHYSICAL REVIEW D 103, 055010 (2021)

Peter W. Graham⁰,¹ Selcuk Haciomeroğlu⁰,² David E. Kaplan,³ Zhanibek Omarov⁰,^{4,2} Surjeet Rajendran,3 and Yannis K. Semertzidis 24 ¹Stanford Institute for Theoretical Physics, Department of Physics, Stanford University, Stanford, California 94305, USA ²Center for Axion and Precision Physics Research, Institute for Basic Science, Daejeon 34051, Republic of Korea ³Department of Physics & Astronomy, The Johns Hopkins University, Baltimore, Maryland 21218, USA ⁴Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea

Muon Entrance Monitor

- Focus muon beam onto opening of injection channel
- Scintillator tiles coupled to SiPMs
- Hole in center to let muon beam pass
- Front tile thickness 1-2 mm to stop surface muons
- A thicker (up to ~5 mm) scintillator layer could be added to better discriminate muons and positrons
- Centering procedure optimized in simulation
- Next step, prototype building

Frozen-spin electrode

Wire electrode simulation

Frozen-spin electrode

Resultant discrepancy of $E_f \sim 1\%$ for momentum bite of 0.5%

Eddy current damping of magnetic pulse

10000

Frequency (MHz)

- Exist off the shelf without substrate down to $17 \mu m$
- Still considerable damping of magnetic pulse possible
- Tests requires
- Alternative one dimensional wires (carbon fibers / tungsten)

Positron detection – figure of merit

Detection of g-2 precession ω_a

- Measurement of mean magnetic field (B)
- Measure $\omega_a(E)$ to tune electric field to frozen-spin condition

Requires momentum resolution

Detection of EDM polarization

• Measurement of Asymmetry as function of time A(t)

Requires spatial resolution along cylinder

Muon g-2 @ PSI?

Muon Tracker

CCW

entrance windows

entrance windows

entrance channel

CW

tracking

volum

- Knowledge of muon trajectory is critical for EDM measurement
 - Ensures nominal muon trajectory for triggering storage pulse kicker
 - Measures injection angle (~ mrad) and muon momentum (~ 0.1%)
 - Systematics cancellation with CW and CCW injection
- Quasi non-invasive gaseous TPC with high granularity GridPix readout
 - Light gas mixtures to reduce multiple scattering
 - Prototype tested with single GridPix read out flushed helium-isobutane

Prototype demonstrating GridPix can be used in light mixtures with wide efficiency plateau

CW/CCW tracking)

From G4BeamLine with BEN magnet

Cross-section view

Positron Detection: g-2 Measurement

- Silicon strip detectors to tune frozen-spin electric field, E_f
- Measures forward-backward asymmetry of positrons
- Two cylindrical layers + petals
- $\Delta p \approx 5 \text{MeV/c}; \Delta t \approx 2 \text{ns}; \Delta R \approx 0.1 \text{mm}$

Design constrained by momentum acceptance of storage region and solenoid bore

Test Beam 2022 Simulation

Verification of prototype entrance detector response

Test beam model in simulation

Vertical RMS Phase Space (Z=-65 mm) Horizontal RMS Phase Space (Z=-65 mm)

Measured beam profiles reproduced in simulation for input of detector performance studies

00 80 Top [p.e.]

Entries Mean x Mean y Std Dev x

Std Dev v

h1h3_early Entries 698698

Reproduction of relative event rates

Test beam – December 2023

- Show control of the momentum of injected muons by measuremens of the ToF through injection tubes.
- Reproducibility of muon momentum distribution for positive and negative magnetic field.
- Fringe field shielding and hysteresis studies.
- Tests of a beam monitor to center the beam on the injection channel.

Systematics cancellation

- 1. $B_r \neq 0$
- 2. Misalignment of B and E planes
- Electric field not on a plane —> magnetic precession in the rest frame —> vertical precession in the lab frame
- 4. Residual (g-2) precession + locally nonhorizontal orbit = vertical precession
- 5. $B_{\theta} \neq 0$
- 6. Early-to-late detector effects

Vertical orbit oscillations! Average to 0, but can deteriorate the quality of the asymmetry fit

> Can be canceled by comparing clockwise (CW) and counter-clockwise (CCW) injection

CW vs. CCW

Single muon storage avoids high detector rates changing with time +

injection effects measured without

muons