

Anomalous precession frequency analysis with a focus on the beam dynamics modeling in the Fermilab Muon g-2 Experiment

zyh1678783412@sjtu.edu.cn Yonghao Zeng **Tsung-Dao Lee Institute, Shanghai Jiao Tong University**

李战道研究所 TSUNG-DAO LEE INSTITUTE

Physics and Measurements of Muon g-2

Beam Dynamics and Systematics

- A Dirac particle has a magnetic dipole moment of $\vec{\mu} = g \frac{q}{2m} \vec{s}$, with g = 2. > In addition to the effects from QED, electroweak and hadronic effects move the g
 - factor away from 2. It has become customary to measure the discrepancy, g 2.
- > If the discrepancy is not found as the prediction from SM value, beyond SM
 - contributions to g 2 could come from SUSY, dark sector or other new physics.

- > The stored muons do not move in a perfect circle due to the quadruples in the storage ring. > The betatron oscillations enter the data through coupling between detector acceptance and the muon decay position.
 - \succ The uncertainty of ω_a is still statistics **dominated** in Run-2/3.

Quantity	Correction	Uncertainty
	(ppb)	(ppb)
ω_a^m statistical	-	201
ω_a^m systematic	-	25

> We will measure the anomalous magnetic moment of muon, $a_{\mu} \equiv (g-2)/2$, to an unprecedented precision of **140 ppb**.

			—	
+			FN	AL Run-1
	+o	+	FN	AL Run-2/3
	+		FN	AL Run-1 + 2/3
		+	Ex	p. average
20.0	20.5	21.0	21.5	22.0 22.5 a _μ · 10 ⁹ – 1165900

- > We released our second result in August 2023, compatible with the Run-1 and BNL E821 result, reaching the 5σ level.

Fermilab E989 Measurement Principle

- > The systematics is only 25 ppb, in which the
 - uncertainty from **coherent betatron oscillation**
 - (CBO) individually contributed to 21 ppb.
- > Modeling CBO in a better way will reduce the

uncertainty.

				<u> </u>	
Systematic uncertainty	Run-2	Run-3a	Run-3b	Run-2/3	
	(ppb)	(ppb)	(ppb)	(ppb)	
CBO handling	22	18	28	$\overline{21}$	
Pileup corrections	9	6	7	7	
Gain corrections	5	4	5	5	
Residual slow effect	5	14	10	10	
Other systematics	2	5	3	4	
Total	25	24	31	25	

Fitting Wiggle Plots

- The fit function for wiggle plot is no longer
 - simple 5 parameters:
 - $N = N_0 e^{-t/\tau} \times \left[1 + A\cos\left(\omega_a \cdot t + \phi\right)\right] \times N_{\text{CBO}}(t) \times \dots$
 - With $N_{CBO}(t)$ modeled by $N_{CBO}(t) = 1 + Ae^{-t/\tau_{CBO}}\cos(\omega_{CBO}t + \varphi_{CBO})$
- > But the exponential shape is **not applicable** for
 - individual calorimeter data.

CBO modeling in Run-4/5/6 Data Analysis

CBO Amplitudes Suppressed in Run-5/6

We applied a radio-frequency (RF) electric field to the quadrupole plates to further suppress the CBO amplitude during Run-5/6 data-taking, which makes modeling CBO behaviour more difficult.

Extracting CBO Amplitude Over Time Using Calorimeter Data

> We slice our wiggle plot into small time windows, such that the CBO amplitude could be sufficiently **regarded as constant**, namely using a **sliding window approach**.

\blacktriangleright Fit the time window with:

Unusual CBO Shapes in Some Calorimeters for Run-5/6 Data

- \succ The shape cannot be described by an exponential function.
- Interpolation methods are limited by the finite data range from the sliding window compared to 700 μs wiggle pot.

Gaussian Process Regression

Sliding window scan: A_{cbo}, calo2

References

1. P. A. Dirac, Proc.Roy.Soc.Lond. A117, 610 (1928) 2. G. W. Bennett et al. (The Muon g-2 Collaboration), Phys. Rev. D 73, 072003(2006) Foundation of China (Grant No. 12075151) 3. D. P. Aguillard et al. (The Muon g–2 Collaboration), Phys. Rev. Lett. 131, 161802(2023)

Work supported by the National Natural Science