

High-Energy Atmospheric Muon Study with TRIDENT

Cen Mo, Weilun Huang, Liang Li, Hualin Mei

April 21, MIP2024

Cosmic Ray

Cosmic ray

- High energy charged particles.
- Composed of p⁺, He and some other heavy nucleus.
- Energy ranges from MeV to EeV.

• Where are they from?

Probe origins of cosmic ray with astrophysical neutrino:

Pros:

- Neutral: not deflected by magnetic field
- Weak: not absorbed

Juan Antonio Aguilar and Jamie Yang. IceCube/WIPAC

Cons:

- Small flux: $E_{\nu} \Phi_{\nu} < 2 \times 10^{-8} GeV cm^{-2} s^{-2} sr^{-1}$
- Small cross section: $\sigma \sim 10^{-33} cm^2$ for $E_{\nu} \sim 10 PeV$

Use sea water as target

- Neutral-current interaction $\nu_l + N \rightarrow \nu_l + X$
- Charged-current interaction $\nu_l + N \rightarrow l + X$

TRIDENT

• TRIDENT (海铃计划): TRoplcal DEep-sea Neutrino Telescope.

A multi-cubic-kilometre neutrino telescope in the western Pacific Ocean. Nat Astron (2023).

- To be located in the South China Sea.
- Penrose tiling structure with 2000m radius, 700m height (8.7 km³). 3500m deep under sea level.

Atmospheric Muons

Background for neutrino telescope: atmospheric muons

- High flux
- Indistinguishable from μ originating from ν_{μ} charge-current interaction.

Based on CORSIKA8 (arxiv:2208.14240):

- The next-generation air shower simulation framework.
- Built a water ball with a radius of 6371 km.
- Outer surface: atmosphere with a thickness of 110 km.
- Density of the atmosphere: U.S. Standard Atmosphere model.

Physics models

- Hadronic interaction models: SIBYLL 2.3d
- Continuous EM energy loss: **PROPOSAL**
- Decay Process: Pythia

MC Energy spectrum: $f(E) \propto E^{-1}$

MC sample counts of primary particle / energy range / direction

	Р	Не	С	Ο	Fe
Energy: 1-100 TeV cosθ: (0, 1)	5e5	5e5	1e5	1e5	1e5
Energy: 100 TeV – 100 PeV cosθ: (0.8, 1)	2e5	1e5	5e4	5e4	4e4
Energy: 100 TeV – 100 PeV cosθ: (0.4, 0.8)	2e5	1e5	5e4	5e4	4e4
Energy: 100 TeV – 100 PeV cosθ: (0, 0.4)	5e4	5e4	2e4	2e4	2e4

- A cosmic ray flux model describes the flux of (p, He, C, O and Fe)
- Three models were investigated:
 - Global Spline Fit (GSF) [arxiv 1711.11432]: data-driven
 - **GST3** [arxiv 1303.3565]: with an assumption of 3 populations of particle sources:
 - Supernova remnants
 - Other galactic sources.
 - Extragalactic sources
 - **Poly-gonato** [arxiv 0210453]: phenomenological model

Muon Flux at Sea Level

- Vertical muon flux at sea level.
- Analytical function:
 - Gaisser analytical parametric model

(Particle Data Group) 2022, 083C01 (2022)

$$\frac{dN_{\mu}}{dE_{\mu}d\Omega} \approx \frac{0.14 \, E_{\mu}^{-2.7}}{\mathrm{cm}^2 \, \mathrm{s \ sr \ GeV}} \times \left\{ \frac{1}{1 + \frac{1.1E_{\mu} \cos \theta}{115 \, \mathrm{GeV}}} + \frac{0.054}{1 + \frac{1.1E_{\mu} \cos \theta}{850 \, \mathrm{GeV}}} \right\}$$
Pion Kaon

Muon flux at a depth of 2.5 km beneath the sea level as a function of muon energy.

- Types of primary nucleus are shown in dashed line
- Rate of atmospheric muon (0.1-100TeV) for a plate with 2 km radius: 2672.15Hz.

Muon Flux in TRIDENT

Muon flux at a depth of 2.5 km beneath the sea level as a function of $cos(\theta)$

CR Model Comparison

Multiplicity distribution

- Muon Multiplicity: number of muons originating from the same primary particle.
- Most (91%) events contain only single muon.
- It is sensitive to Z of primary particles.

Reconstruction of muon events:

Traditional method: Likelihood method.

 Construct probability density function (PDF) with Monte Carlo result:

Likelihood $(\hat{n}_{\mu}, \vec{x}_{\mu}, t_{\mu}; \vec{x}_{i}, t_{i}') = \Pi_{i} P(t_{i}^{res})$

- High accuracy
- High runtime cost

Graph Neural Network (GNN) based method:

- Represent each digital optical module as a node. Train GNN with Monte Carlo result.
- High accuracy
- Low runtime cost

Angular resolution of different methods

Mean runtime cost per event

Method	Time (1-10 TeV) [ms]	Time (10-100 TeV) [ms]
Likelihood	1290.52	847.27
GNN lite (GPU)	0.27	0.57
GNN large (GPU)	1.21	3.53
GNN lite (CPU)	7.26	17.87
GNN large (CPU)	95.67	231.97

Define control region with atmospheric muons

Down-going muon events:

- Dominated by atmospheric muons (background).
- High flux.
- Control Region (CR).

Up-going muon events:

- Dominated by neutrino events (signal).
- Signal Region (SR).

Define CR to calibrate simulation & reconstruction.

To calibrate the simulation & reconstruction algorithm:

- Measure the atmospheric muons directly.
- Compare directly measured results with:
 - Reconstructed direction.
 - Flux of different direction (from MC results).

A study on high energy **atmospheric muon** is conducted:

- Full simulation of atmospheric muons were preformed with CORSIKA8.
- Results across three cosmic ray flux models were compared:
 - The choice of model can lead to ~20% variation in outcomes.
- At a depth of 2.5 km under sea water, the rate of atmospheric muon (0.1-100TeV) is approximately $2 \times 10^{-4} \text{Hz}/m^2$.
- The angular resolution for high-energy muon tracks is approximately 0.1 degrees.

Outlook:

- The composition of cosmic ray can be inferred by reconstructing multiplicity of muon bundle.
- Muon simulation & reconstruction algorithms can be **calibrated** with atmospheric muons.

_

Thanks!

mo_cen@sjtu.edu.cn

Backup

Muon Flux at Sea Level

https://pos.sissa.it/423/071

Muon Flux at Sea Level

• Energy distribution of primary particles

Sensitivity

Fig. 3 | Projected point source sensitivities and discovery potentials of TRIDENT. All-sky point source 90% confidence-level median sensitivity (dashed dot lines) and 5σ discovery potential (solid lines) of TRIDENT with 10 years of data taking. The left panel corresponds to a source energy spectrum index of 2 (labelled E^{-2}) and minimum energy of 10 TeV, while the right panel assumes an index of 3 (E^{-3}) and minimum energy of 1 TeV. The *x* axis represents the sine declination (sin δ) and the *y* axis is the neutrino flux (ϕ). KM3NeT, IceCube and

IceCube-Gen2 sensitivities^{15,66,67} are also shown for comparison. IceCube, located at the South Pole, has increased sensitivity to the northern sky. For a source located in the southern sky with a spectral index of 3, TRIDENT will have 4 orders of magnitude improvement in sensitivity compared with IceCube. Similarly comparing to the future telescope KM3NeT located in the Northern Hemisphere yields an improvement factor of approximately 5.