Study of cLFV process on electron muon collider

<u>Ran Ding¹</u>, Jingshu Li¹, Meng Lu¹, Zhengyun You¹, Zijian Wang² and Qiang Li²

¹Sun Yat-sen University

²Peking University

MIP 2024, Beijing

Outline

Image: Motivation

- **Z**' model and cLFV process
- **D** Electron muon collider
- **D** Event simulation
- **D** Background study
- Sensitivity result

D Summary

Motivation

Charge lepton flavor violation

- Strongly suppress in SM
- Enhance by many BSM models: supersymmetry, leptoquark, Higgs-doublet, compositeness, heavy Z'
- A clear signal to new physics

Neutrino Flavor Violation is observed !

charged Lepton Flavor Violation !? (cLFV)

$$Br(\mu \to e\gamma) = \frac{3\alpha}{32\pi} \left| \sum_{i=2,3} U_{\mu i}^* U_{ei} \frac{\Delta m_{i1}^2}{M_W^2} \right|^2 \sim 10^{-54}$$

Z' model and cLFV process

- an extra U(1) gauge symmetry
 → massive neutral gauge boson (Z')
 predicted by many BSM models
- Generally, similar quark coupling and chiral structure as SM Z_0
- In leptonic decays, lepton flavor violation is allowed

$$\lambda = \begin{pmatrix} \lambda_{ee} & \lambda_{e\mu} & \lambda_{e\tau} \\ \lambda_{\mu e} & \lambda_{\mu\mu} & \lambda_{\mu\tau} \\ \lambda_{\tau e} & \lambda_{\tau\mu} & \lambda_{\tau\tau} \end{pmatrix}$$

gives the strength of the cLFV couplings relative to the SM couplings

- $M_{Z'}$: mass of Z'
- α : fine structure constant

*s*_{*W*}: sine of the weak mixing angle

c_W: cosine of the weak mixing angle

Z' model and cLFV process

 G_F : Fermi constant $\Gamma_{capture}$: nuclear muon rate m_{μ} : mass of muon

Z_{eff}, **F**(**q**), **Z**, **N**: nuclear parameters

Z' cLFV on eµ collider

Ran Ding (Sun Yat-sen University)

Nucl. Phys. B 409 (1993), 69-86.

Search for Z' on collider

Phys.Rev.D 98 (2018) 9, 092008.

Electron muon collider

□ High energy electron muon collider

 $E_e = 200 \text{ GeV}, E_\mu = 3 \text{ TeV} (\sqrt{s} = 1.55 \text{ TeV})$

annihilation $W^+W^-/q\bar{q}$ absent)

PTEP 2022 (2022) 053B02

Event simulation

• **cLFV signal : Z' model** *M_Z*: floating from the second secon

 $M_{Z'}$: floating from 0.2 TeV to 3 TeV

$$e^{-}\mu^{+} \rightarrow e^{+}e^{-}$$

$$e^{-}\mu^{+} \rightarrow \mu^{+}\mu^{-}$$

$$e^{-}\mu^{+} \rightarrow \tau^{-}\mu^{+}$$
The coupling strength
$$E_{\text{Beam}} \begin{cases} E_{e} = 200 \text{ GeV}, E_{\mu} = 3 \text{ TeV} (\sqrt{s} = 1.55 \text{ TeV}) \\ E_{e} = 30 \text{ GeV}, E_{\mu} = 1 \text{ TeV} (\sqrt{s} = 346 \text{ GeV}) \\ 1 (i = j) \\ 1 (i = j) \\ 1 (i \neq j, only \text{ one element}) \quad i, j = e, \mu, \tau \\ 0 (else \ i \neq j) \end{cases}$$
No s-channel in $e^{+}\mu^{-} \rightarrow \tau^{+}\mu^{-}$

• MadGraph5, Pythia8, Delphes

Z' cLFV on e μ collider

٠

□ SM background

Initial lepton flavor is non-zero: $2 \rightarrow 2$ background are forbidden

Much cleaner than different-sign electron / muon collider

Main background (Eg. $\lambda_{e\mu}$ process)

in
$$e^+e^-$$
 collision
$$\begin{cases} e^+e^- \to W^+W^- \to e^+\mu^- v_\mu \bar{v}_e \\ e^+e^- \to \tau^+\tau^- \to e^+\mu^- v_\mu \bar{v}_e v_\tau \bar{v}_\tau \end{cases}$$

• large cross section && close to the signal at the kinematic level

in
$$\mu^+ e^-$$
 collision $\mu^+ e^- \rightarrow Z^0 v_e \bar{v}_\mu \rightarrow e^+ e^- v_e \bar{v}_\mu$

 $ee \rightarrow eu$, lumi = 5 ab⁻¹

ww

A.U.

0.7Ē

JHEP 03 (2023) 190

Accidental background:	Signal Process	SM and accidental background
$e^{-}\mu^{+} \rightarrow e^{-}\mu^{+}$ ($e\mu$ scattering)	$\mu^+e^- \to e^+e^-$	$\mu^+ e^- \to e^+ e^- \nu_e \bar{\nu}_\mu$ $\mu^+ e^- \to e^+ e^- \nu_e \bar{\nu}_\mu \nu \bar{\nu}$ $\mu^+ e^- \to \mu^+ e^-$
$e - \mu$ misidentify ~10 ⁻⁶	$\mu^+ e^- o \mu^+ \mu^-$	$\mu^+ e^- \to \mu^+ \mu^- \nu_e \bar{\nu}_\mu$ $\mu^+ e^- \to \mu^+ \mu^- \nu_e \bar{\nu}_\mu \nu \bar{\nu}$ $\mu^+ e^- \to \mu^+ e^-$
$e^-\mu^+ \to e^+e^-/e^-\mu^+ \to \mu^+\mu^-$	$\mu^+ e^- \to \mu^+ \tau^-$	$\mu^+ e^- \to \mu^+ \tau^- \nu_e \bar{\nu}_\mu$ $\mu^+ e^- \to \mu^+ \tau^- \nu_e \bar{\nu}_\mu \nu \bar{\nu}$

• Signal candidate should have correct final state leptons

p_T: the transverse momentum

 $|\eta|$: the pseudo-rapidity

• Leptons p_T , $|\eta|$, ϕ : obtained by Delphes output

- ϕ : the azimuthal angle
- Invariant mass of final state dileptons (M_{ll}) is utilized to remove background

Z' cLFV on eµ collider

- Integral area (BKG) determined by the cross section, specially for $e\mu$ scattering also includes the probability of misidentification (~10⁻⁶)
- In simulation τ should decay to hadron ~ 60%
- Optimized by maximizing the FOM

Analysis framework

- Get the binned histogram of final leptons p_T
- Per-event weight of each signal / background: $n_x = \sigma_x L/N$
- Define the test statistic Z as:

 σ_x : cross section L: luminosity N: generate number

$$Z = \sum_{i=1}^{bins} Z_i$$

$$Z_i \coloneqq 2[n_i - b_i + b_i \ln(b_i/n_i)]$$

- Subject to a χ^2 distribution, iterate to get the σ_{sig} of 90% exclusion and corresponding λ_{ll}

Current and prospect limit

D BF limits @ 90% C. L.

Signal	Current	Prospect
$\mu^- ightarrow e^- \gamma$	4.2×10^{-13} MEG (PSI)	6.0×10^{-14} MEGII
$\mu^- N \rightarrow e^- N$	7.0 × 10 ⁻¹³ SINDRUM II (Au)	3.0×10^{-17} Comet
$\mu^- ightarrow e^- e^- e^+$	1.0×10^{-13} SINDRUM	$1.0 imes 10^{-16}$ Mu3e
$\tau^- ightarrow e^- \gamma$	3.3×10^{-8} Belle	9.0×10^{-9} Belle II
$\tau^- \to e^- e^- e^+$	2.7×10^{-8} Belle	4.7×10^{-10} Belle II
$\tau^- \to e^- \mu^- \mu^+$	2.7×10^{-8} Belle	4.5×10^{-10} Belle II

Eur. Phys. J. C 76 (2016) no.8, 434 Nucl. Phys. B 299 (1988) 1 Eur. Phys. J. C 47 (2006) 337. Phys. Rev. Lett. 104 (2010) 021802 Phys. Lett. B 687 (2010) 139

\Box Sensitivity of the λ_{ij}

Sensitivity result

- Results among different signal channels on collider are on the same
 ~ <u>cross section</u>, efficiency, background value......
- τ channel have a certain advantage among the current limits

Z' cLFV on eµ collider

Ran Ding (Sun Yat-sen University)

Sensitivity result

(c) $\mu^+ e^- \rightarrow \mu^+ \mu^-$

• A special signal on collider that cannot search in low energy experiment: $\lambda_{e\mu} \times \lambda_{\mu\mu}$

Z' cLFV on eµ collider

Ran Ding (Sun Yat-sen University)

2024/4/21 16

- The observation of any cLFV process would be a clear signal of new physics beyond the SM
- Introduce a massive neutral boson Z'
- Perform a Monte Carlo study on cLFV searches at μTRISTAN (346 GeV) and a 1.5 TeV electron muon collider
- High luminosity electron muon collider have a certain advantage on cLFV searching especially in τ channel.

Thank you!