# GNN-Based Tracking Reconstruction for the Fermilab Muon g-2 Experiment

**Bingzhi Li** 



之江实验室 ZHEJIANG LAB

MIP 2024

Workshop on Muon Physics at the Intensity and Precision Frontiers

Apr 19–22, 2024 W301, School of Physics, PKU



### Contents

### ✓ Tracking Reconstruction in the Muon g-2 Experiment

- ✓ Graph Neural Network
- ✓ GNN-based Tracking Reconstruction
  - Track Finding
  - Vertex Fitting
- ✓ Summary and Outlook



## Brief introduction to the Muon g-2 Experiment

- The Fermilab muon g-2 experiment aims to measure the muon anomalous magnetic moment  $a_{\mu}$  to 140ppb
- The Run 1-3 measurement precision is ~200 ppb
- Data collection is finished on 2023 ~ 21.9x BNL data
- 5σ discrepancy between Fermilab along result and SM value (white paper)
- Lattice HVP calculation and CMD3 experiment results reduce the discrepancy
- Expect results to be published by 2025





# Tracker Detector in the Muon g-2 Experiment

- 50:50 Argon Ethane gas straw tube ۲
- Time resolution 650ps / Position resolution 0.1mm
- Tracker system:
  - 2 station  $\times$  8 module  $\times$  2 view  $\times$  2 layer





# Motivation of the Tracker System

- Beam Position: The main role of the tracking detector is to measure the muon-beam spatial profile, along with projections in the radial and vertical directions
- Beam Momentum: Make an independent measurement of positron momentum
- Beam Dynamics: Characterize position and width CBO
  modulations, horizontal and vertical

# Radial Projection





之江实验室 CHEJIANG LAB

Radial Position [mm]



# Default Tracking Reconstruction Workflow



taken from Fermilab muon g-2 internal note 215



### Default Tracking Reconstruction Workflow





### Graph Neural Network

A graph represents the relations (edges) between a collection of entities (nodes)









Molecules as graphs

Social networks as graphs



### GNN V.S. official workflow



### 9 之江实验室 CHEJIANG LAB

### Datasets

### A ML model is only as good as the data it is trained on

- Use part of Run3 track data as the dataset: 150,000 time island
- Graph Nodes: track hits
- Graph Edges: relation between every two track hits
- Task: Edge Classification + Node Clustering = Track Finding





# Build the Graphs:

Node: tracker hits Node features: {#layer, #straw, x, y,  $t - \overline{t}$ , hit width}

Edge: fully connected edges Edge features:  $\{ |\Delta layer|, |\Delta straw|, |\Delta x|, |\Delta y|, |\Delta (t - \bar{t})|, |\Delta width|, \frac{|\Delta x|}{\sqrt{\Delta x^2 + \Delta y^2}}, \frac{|\Delta y|}{\sqrt{\Delta x^2 + \Delta y^2}} \}$ Edge label: fake edges / truth edges

### **Truth edge:**

edge between the nodes which are belong to the same reconstructed track

### Fake edge:

edge between the nodes which are not belong to the same track



7.5°



之江实验室

10

ZHEJIANG LAB



# GNN Track Finding: Message Passing

- Method: Message Passing
  - 1. For each node in the graph, gather all the neighboring node features
  - 2. Aggregate all features via an aggregate function (like sum)
  - 3. All pooled messages are passed through an update function



### GNN Track Finding: Architecture



2. The messages between node *i* and node *j* are generated through a network  $\phi_m$ 

 $m_{ij}^l = \phi_e(h_i^l, h_j^l, x^l)$ 

- 3. The edge representation will be updated through a network  $\phi_x$  with residual connection  $x_i^{l+1} = x_i^l + \phi_x(m_{ij}^l) \cdot x_i^l$
- 4. The node representation will be updated through a network  $\phi_h$  with residual connection

$$h_{i}^{l+1} = h_{i}^{l} + \phi_{h}(h_{i}^{l}, \sum w_{ij}m_{ij}^{l})$$
 where  $w_{ij} = \phi_{w}(m_{ij}^{l})$ 

5. Repeat step 2-4 for L layer, then use a classifier network φ<sub>c</sub> to judge whether the edges exist between node *i* and node *j*: s<sub>ij</sub> = φ<sub>c</sub>(h<sup>L</sup><sub>i</sub>, h<sup>L</sup><sub>j</sub>)
 □ Loss Function: Binary Cross Entropy loss L = -1/N Σ<sub>i=1</sub><sup>N</sup> [y<sub>i</sub>log(p<sub>i</sub>) + (1 - y<sub>i</sub>)log(1 - p<sub>i</sub>)]



# GNN Track Finding: Edge Classification

**Training and Performance of the GNN edge classification** 





• Quickly converge around 25 epoch

train accuracy vs ep







• Edge classification accuracy: 98%



# GNN Track Finding: Node Clustering

Remove the fake edges according to the GNN model

### **Perfect condition:**

- All fake edges are removed
- All hits belong to a track are connected to each other
- No link connection between different tracks and noises

### Practice condition: 98% accuracy

- truth edges → fake edges, be removed
- fake edges  $\rightarrow$  truth edges, remaining
- Hard to use a simple complete condition cut to form track





### GNN Track Finding: Node Clustering

- The fully connected graph method has both high efficiency and robustness:
  - ✓ The edge accuracy is ~98%
  - Even one hit disconnected with its neighbor hit, it not likely loss connection with all the other hits in the same track
  - ✓ The noise hit is hard to get connection with most/all the track hits

# Adopt a classical graph analysis method to select the tracks from the output graph: Louvain Algorithm

Louvain algorithm is an unsupervised community discovery algorithm based on modularity:  $Q = \sum_{c} \left[\frac{\sum_{in}}{2m} - \left(\frac{\sum_{tot}}{2m}\right)^{2}\right]$ 



# GNN Track Finding: Efficiency and Purity





- **Promising result:** 
  - ✓ Efficiency and purity are both >95%
  - ✓ In the simulation study, the default track method found more #tracks (106% compared to the truth)
  - ✓ The GNN method found 94% #tracks compared to the default track method
  - ✓ The GNN method seems to fix the overestimation (94%×106%=99.6%) using the default track recon data
  - Will do more detailed study to further prove that

ZHEJIANG LAB

之江实验室

# **GNN Vertex Fitting:**



- Use fitted tracks to extrapolate the vertex
- Use GEANE package in GEANT4 to do the extrapolation: 2.5s process ~400 time island
- Want to use GNN and GPU to speed up this progress:
   12G 2080Ti: 8s ~ 35,000 time island, ~25x faster

之江实验室

17

ZHEJIANG LAB

• Increase the memory and update the GPU can make it even faster (100x or even 1000x)

### Input data:

- Track finding features
- Add high level features

(momentum, position and drift time, DCA)



### GNN Vertex Fitting: Architecture



- Aggregate the final node representation h<sup>L</sup> and then use a regression network to predict the vertex info (time, position, momentum)
- 3 individual GNN are trained to extract time, position and momentum separately

### **Regression Loss Function:**

Huber Loss: 
$$L_{\delta}(y, f(x)) = \begin{cases} \frac{1}{2}(y - f(x))^2, & |y - f(x)| \le \delta \\ \delta |y - f(x)| - \frac{1}{2}\delta^2, & |y - f(x)| > \delta \end{cases}$$
  
SmoothL1 Loss:  $loss(x, y) = \frac{1}{n} \sum_{i=1}^n \begin{cases} .5 * (y_i - f(x_i))^2, & if |y_i - f(x_i)| < 1 \\ |y_i - f(x_i)| - 0.5, & otherwise \end{cases}$   
Log Cosh Loss:  $L(y, y^p) = \sum_{i=1}^n \log(\cosh(y_i^p - y_i))$ 

19 之江实验室 CHEJIANG LAB

### **GNN Vertex Fitting: Time**





 $\Delta t = t_v - \bar{t}_t$   $t_v : \text{ vertex time}$  $\bar{t}_t : \text{ mean time of track}$ 

Difference between GNN and recon vertex time:  $0.03ns \pm 2.01ns$ 

Similar time resolution between recon and simulation

20 之江实验室 CHEJIANG LAB

### **GNN Vertex Fitting: Momentum**



- Distributions of momentum are almost similar, mismatch mainly at the tail
- The mean ∆momentum are <5 MeV level, the RMS are at ~100MeV level



# Summary and Outlook

- Tracker is one of the key detector system component of the muon g-2 experiment
  - Tracking measurement and reconstruction paly a important role in various aspects of the experiment: Field, Beam Dynamics ...
- GNN in tracking is motivated by current limitations in tracking efficiency and speed
- Developed a fully connected GNN workflow (Finding & Fitting) to solve the challenges
  - Preliminary result based on reconstruction data is promising
- Further studies needed:
  - $\checkmark\,$  GNN for Track fitting
  - ✓ Verify the GNN workflow in simulation data
  - ✓ Test the feasibility of GNN methods in analysis
  - $\checkmark\,$  Rather than just staying at the training itself



# Thanks

