

Search for Higgs boson decaying to muon pair at LHC

Hongtao Yang (杨洪洮) **University of Science and Technology of China**

Workshop on Muon Physics at the Intensity and Precision Frontiers **Peking University, Beijing** April 21, 2024

Thanks to Stephane Cooperstein (UCSD) for very helpful discussions!

- Elementary particles acquire mass through interactions (couplings) with the Higgs field according to SM
 - A new force of different nature than any other known ones!
 - Higgs boson couplings to W/Z (Run 1) and 3rd generation fermions (Run 1 + 2) has been observed
 - Couplings to **2nd generation fermions** still to be established
- $H \rightarrow \mu \mu$ provides an unique opportunity for exploring mass genesis of 2nd generation fermions at LHC
 - **Better sensitivity** than $H \rightarrow cc$ ($H \rightarrow ss$ hardly feasible)
 - Muon mass precisely known. H-µ coupling measurement therefore represents a key test of Higgs mechanism

Introduction

	Mass
μ	105.6583755±0.0000023
т	1776.86±0.12 MeV
t	172.69±0.3 GeV
b	4.18±0.03 GeV
С	1.27±0.02 GeV

All values from PDG 2023

LHC Run 2

- Successful Run 2 pp collision data taking at $\sqrt{s} = 13$ TeV by both ATLAS and CMS

MIP2024, April 21, 2024

energy

Higgs boson production and decay to dimuon

Gluon-fusion (ggF, ~87%)

Vector boson fusion (VBF, ~7%)

3.78 pb

W/Z

W/Z

- Physics analysis can explore different topologies of each production mode to maximize sensitivity
- Expect ~1700 SM H $\rightarrow \mu\mu$ candidates in Run 2 data collected by ATLAS and CMS each
 - Important to ensure high muon reconstruction efficiency and good momentum resolution

Hongtao Yang (USTC)

- **Drell-Yan** is the dominant background
- EW Zjj, diboson, top also important for studying VBF, VH, and ttH, respectively
- Typical S/B O(0.1%)
 - Accuracy of background modeling is the key to search for $H \rightarrow \mu \mu$ signal!
 - Advanced analysis techniques i.e. machine learning needed to suppress background
- Background spectrum smoothly falling after Z-pole
 - Data-driven estimation feasible

Background processes

- - acceptance $(2.5 < l\eta l < 2.7)$ in ATLAS
- **High efficiency** for muon reconstruction in both ATLAS and CMS
 - Small impact from high rate and pileup. Good MC modeling

Muon reconstruction

Most muons reconstructed from combining inner tracker track + muon spectrometer track

- Also use lower quality tracks under certain conditions, e.g. MS-only track when out of inner tracker

- Use single muon trigger
 - Trigger eff. ATLAS 91%, CMS 95%
- Select events with two oppositecharge high p_T muons within detector acceptance, with quality requirements
 - ATLAS select **52%** signal events selected in 120-130 GeV
- FSR recovery for better resolution

Event selection

- Use the decay products of W/ Z/top to tag VH and ttH events
 - ttH: b-jet + jets or leptons
 - VH: additional leptons
- Use Boosted Decision Trees (BDT) to combine all inputs from event topologies
- Expect very low rate due to small cross-sections

ttH and VH categories

- VBF: isolate out VBF signal featuring 2 jets with large m_{ii} **large** $\Delta \eta_{ii}$ etc. Use Deep Neural Network (DNN) or BDT to enhance sensitivity
- ggF: exploit boost of dimuon pT, angular dist. etc. to suppress background with BDT
- Veto events with b-tagged jet to suppress top background

VBF and ggF categories

MIP2024, April 21, 2024

MIP2024, April 21, 2024

- SM Higgs boson width only 4 MeV: signal line-shape fully driven by detector resolution (~2 GeV)
- CMS signal resolution up to ~2 better than ATLAS mainly due to

stronger magnetic field in the inner tracker (ATLAS 2 T vs. CMS 3.8 T)

- Muon momentum scale uncertainty: O(0.1%)
- Muon momentum resolution uncertainty: O(1%)
- Systematics on signal are in general negligible compared to data statistics

- Used by ATLAS and most CMS categories
- ATLAS and CMS independently converged on "corexempirical" strategy
 - Core function: capture the bulk of the spectrum shape
 - ATLAS: LO Drell-Yan line-shape convoluted with detector resolution, fully rigid
 - CMS: discrete profile of a set of physics-driven or customized functions, contains free parameters correlated among ggF categories
 - **Empirical function**: absorb remaining difference

Background modeling: data-driven sideband fit

- ATLAS: single model selected by spurious signal test based on high statistics MC background template
 - Fit S+B model to a bkg.-only MC template. Fitted signal yield called "spurious signal" (SS). It is used to
 - 1. Select bkg. model (SS < 20% of data stat. uncert.)
 - 2. Assigned as background model systematic
- CMS: multi-model discrete profile
 - Select models with bias < 20% of data stat. uncert.
 - Let data decide the best model in the fit (discrete-profile)

How to decide data-driven parameterization

MC template fit for CMS VBF category

Simultaneous fit signal region and sideband. DY (@NLO) and EW Zjj (@LO) production both simulated with MG5_aMC. Bkg. normalized to state-of-art cross-section calculations

Hongtao Yang (USTC)

- Directly fit MC templates to data
 - 20% improvement compared with datadriven approach in **VBF** category
 - Data sideband stat. uncert. + bkg. modeling uncert. \rightarrow experiment and theory syst. in MC

- Expected significance 1.7 σ , observed 2.0 σ (m_H = 125.09 GeV)

ATLAS results

• Signal strength $\mu = 1.2 \pm 0.58$ (stat) $^{+0.13}_{-0.08}$ (theory) $^{+0.07}_{-0.03}$ (exp) ± 0.10 (spurious)

Muon Yukawa coupling strength test

Hongtao Yang (USTC)

LFV Higgs boson decay searches

fit

Data

Hongtao Yang (USTC)

- First evidence of $H \rightarrow \mu\mu$ declared with LHC Run 2 data (<u>CERN press release</u>)
- Run 3 data analysis ongoing. Expect ~250 fb⁻¹ @13.6 TeV
 - Observation might be possible combining ATLAS+CMS?
- Single experiment observation expected in the middle of HL-LHC
- $H \rightarrow \mu \mu$ will hopefully provide very interesting test of SM by the end of LHC lifetime!

Conclusions

- LHC Higgs Cross-section Working Group, "Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector" (a.k.a. "Yellow Report 4"), <u>arXiv:1610.07922</u>
- ATLAS Collaboration, "Muon reconstruction and identification efficiency in ATLAS using the full Run 2 pp collision data set at $\sqrt{s} = 13$ TeV", <u>EPJC 81 (2021) 578</u>
- ATLAS Collaboration, "Studies of the muon momentum calibration and performance of the ATLAS detector with pp collisions at $\sqrt{s} = 13$ TeV", EPJC 83 (2023) 686
- CMS Collaboration, "Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at \sqrt{s} = 13 TeV", <u>JINST 13 (2018) P06015</u>
- CMS Collaboration, "Muon reconstruction performance during Run II", <u>CMS DP -2019/022</u>
- ATLAS Collaboration, "A search for the dimuon decay of the Standard Model Higgs boson with the ATLAS detector", PLB <u>812 (2021) 135980</u>
- CMS Collaboration, "Evidence for Higgs boson decay to a pair of muons", JHEP 01 (2021) 148 • ATLAS Collaboration, "A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the
- discovery", <u>Nature 607 (2022) 52</u>
- CMS Collaboration, "A portrait of the Higgs boson by the CMS experiment ten years after the discovery", Nature 607 $(2022)\ 60$
- M. Cepeda et. al., "Higgs Physics at the HL-LHC and HE-LHC", <u>arXiv:1902.00134</u>

Backup

Hongtao Yang (USTC)

May 12, 2023 半导体辐射探测器研讨会

ATLAS muon spectrometer

Hongtao Yang (USTC)

MIP2024, April 21, 2024

CMS muon spectrometer

Hongtao Yang (USTC)

MIP2024, April 21, 2024

