Workshop on Muon Physics at the Intensity and Precision Frontiers (MIP 2024)

Finding axions at muon experiments

Lorenzo Calibbi

Nankai University

PKU, Beijing, April 20th 2024

Motivation: we have high-intensity muon experiments!

Current landscape of searches for charged lepton flavour violation (CLFV):

ALPs at muon experiments

What about searching for *light* new physics there?

Assume there is a *light*, *invisible*, new particle "*a*" with *flavour-violating couplings* to leptons

Light:
$$m_a < m_\mu, m_\tau$$

Invisible:

- Neutral
- Feebly coupled (long-lived)

CLFV modes would then be
$$\mu \to e a, \tau \to \mu a, \mu \to e \gamma a, \text{ etc.}$$

Interesting interplay with cosmology/astrophysics:

- Can *a* be Dark Matter? (yes, if long-lived enough)
- Bounds from star cooling/supernovae (if light and feeble enough)

Why should *a* be light and feebly-coupled?

Natural, if it is the (pseudo) Nambu-Goldstone boson (PNGB) of a spontaneously broken global U(1), *aka* an axion-like particle (ALP)

Examples of lepton-flavour-violating (LFV) ALPs:

	Broken global symmetry:	PNGB:	<u>Wilczek '82</u> <u>Pilaftsis '93</u>
• Neutrino masses \rightarrow	Lepton Number	Majoron	<u>Feng et al. '97</u>
• Strong CP problem \rightarrow	Peccei-Quinn	Axion	<u>LC Goertz Redigolo</u> <u>Ziegler Zupan '16</u>
• Flavour problem \rightarrow	Flavour symmetry (Froggatt-Nielsen)	Familon	<u>Di Luzio et al. '17, '19</u> <u>LC Redigolo Ziegler</u> <u>Zupan '20</u>
	•••		-

Equivalent possibility: light Z' of a local U(1), e.g. L_i - L_j (with $g \ll 1$)

Heeck '16

ALPs at muon experiments

Where does *lepton flavour violation* come from?

- If lepton U(1) charges are flavour non-universal
 naturally flavour-violating couplings
- Alternatively, loop-induced flavour-violating couplings

Explicit examples at the end...

Where does *lepton flavour violation* come from?

This generic Lagrangian induces 2-body LFV decays such as:

$$\Gamma(\ell_i \to \ell_j a) = \frac{1}{16\pi} \frac{m_{\ell_i}^3}{F_{ij}^2} \left(1 - \frac{m_a^2}{m_{\ell_i}^2}\right)^2 \qquad F_{ij} \equiv \frac{2f_a}{\sqrt{|C_{ij}^V|^2 + |C_{ij}^A|^2}}$$
Feng et al. '97

ALPs at muon experiments

Signal: monochromatic positron with

Differential decay rate:
$$\frac{d\Gamma(\ell_i \to \ell_j a)}{d \cos \theta} = \frac{m_{\ell_i}^3}{32\pi F_{\ell_i \ell_j}^2} \left(1 - \frac{m_a^2}{m_{\ell_i}^2}\right)^2 \left[1 + 2P_{\ell_j} \cos \theta \frac{C_{\ell_i \ell_j}^V C_{\ell_i \ell_j}^L}{(C_{\ell_i \ell_j}^V)^2 + (C_{\ell_i \ell_j}^A)^2}\right]$$
signal depends on the chirality of the couplings
Michel spectrum:
$$\frac{d^2 \Gamma(\mu^+ \to e^+ \nu_e \bar{\nu}_\mu)}{dx_e d \cos \theta} \simeq \Gamma_\mu \left((3 - 2x_e) - \frac{P_\mu(2x_e - 1) \cos \theta}{m_e} x_e^2 - \frac{2p_e}{m_\mu}\right)$$
And "surface" muons are highly polarized (produced by pion $\frac{2E_e}{\mu}$ and $\frac{2E_e}{\mu}$ polarization
and "surface" muons are highly polarized (produced by pion $\frac{2E_e}{\mu}$ at rest on the surface of the production target) \rightarrow the SM background can be suppressed
$$m_a \left(\text{MeV}\right) = \frac{105}{2.5} = \frac{94}{0.4} + \frac{82}{0.6} + \frac{67}{0.4} + \frac{47}{0.6} + \frac{6}{0.8} + \frac{10}{10} + \frac{94}{0.4} + \frac{82}{0.6} + \frac{67}{0.4} + \frac{47}{0.6} + \frac{94}{0.4} + \frac{82}{0.6} + \frac{67}{0.4} + \frac{47}{0.6} + \frac{9}{0.4} + \frac{10}{0.4} + \frac{9}{0.4} + \frac{10}{0.4} + \frac{9}{0.4} + \frac{10}{0.4} + \frac$$

ALPs at muon experiments

Lepton-flavour-violating invisible ALPs

Decays mediated by dim-5 operators: much larger NP scales can be reached than $\mu \rightarrow e\gamma$, $\mu \rightarrow 3e$, $\mu \rightarrow e$ conv. (from dim-6 ops, NP scale reach ~10⁷-10⁸GeV)

ALPs at muon experiments

Past searches: $\mu \rightarrow e a$

ALPs at muon experiments

Past searches: $\mu \rightarrow e a$

ALPs at muon experiments

Present bounds based on old experiments and/or moderate luminosities (<10⁹ total muon decays)

Modern facilities, e.g. $\pi E5$ beamline at PSI (where MEGII and Mu3e are located), can deliver >10⁸ muons *per second*: next generation experiments must do better!

slide borrowed from A. Papa

MEG: Signature and experimental setup

- The MEG experiment aims to search for $\mu^+ \rightarrow e^+ \gamma$ with a sensitivity of ~10⁻¹³ (previous upper limit BR($\mu^+ \rightarrow e^+ \gamma$) $\leq 1.2 \times 10^{-11}$ @90 C.L. by MEGA experiment)
- Five observables (E_g, E_e, t_{eg}, 9_{eg} , ϕ_{eg}) to characterize $\mu \rightarrow e\gamma$ events

Final result (with 7.5x10¹⁴ μ^+ on target): BR($\mu \rightarrow e\gamma$) < 4.2 × 10⁻¹³ (90% CL)

ALPs at muon experiments

LC Redigolo Ziegler Zupan '20

What about a Jodidio-like search at MEG II for $m_a \approx 0$ with a *forward calorimeter*? We propose a modified setup of MEG II ("MEGII-fwd") and ~2 weeks dedicated run

idea from discussions with A. Papa and G. Signorelli, thanks!

Our estimate of the sensitivity of a dedicate run (2 weeks with $10^8 \mu^+/s$):

ALPs at muon experiments

Future prospects: Mu3e

Mu3e: The $\mu^+ \rightarrow e^+ e^+ e^-$ search

slide borrowed from A. Papa

- The Mu3e experiment aims to search for µ⁺ → e⁺ e⁻ with a sensitivity of ~10⁻¹⁵ (Phase I) up to down ~10⁻¹⁶ (Phase II). Previous upper limit BR(µ⁺ → e⁺ e⁺ e⁻) ≤ 1 x 10⁻¹² @90 C.L. by SINDRUM experiment)
- Observables (E_e, t_e, vertex) to characterize $\mu \rightarrow$ eee events

ALPs at muon experiments

Future prospects: COMET/Mu2e

ALPs at muon experiments

Future prospects: COMET/Mu2e

ALPs at muon experiments

At a high-energy muon collider, one could e.g. test the ALP couplings to EW gauge bosons:

$$\mathcal{L}_{eff} \supset -\frac{g_{agg}}{4} a G^a_{\mu\nu} \tilde{G}^{\mu\nu}_a - \frac{g_{a\gamma\gamma}}{4} a F_{\mu\nu} \tilde{F}^{\mu\nu} - \frac{g_{a\gamma Z}}{4} a F_{\mu\nu} \tilde{Z}^{\mu\nu} -\frac{g_{aZZ}}{4} a Z_{\mu\nu} \tilde{Z}^{\mu\nu} - \frac{g_{aWW}}{4} a W_{\mu\nu} \tilde{W}^{\mu\nu} ,$$

$$\begin{split} g_{agg} &= \frac{4}{f_a} C_{\tilde{G}} \ , \ g_{a\gamma\gamma} = \frac{4}{f_a} (s_{\theta}^2 C_{\tilde{W}} + c_{\theta}^2 C_{\tilde{B}}) \ , \ g_{aZZ} = \frac{4}{f_a} (c_{\theta}^2 C_{\tilde{W}} + s_{\theta}^2 C_{\tilde{B}}) \\ g_{a\gamma Z} &= \frac{8}{f_a} s_{\theta} c_{\theta} (C_{\tilde{W}} - C_{\tilde{B}}) \ , \ g_{aWW} = \frac{4}{f_a} C_{\tilde{W}} \ , \end{split}$$

Han Li Wang '22

ALPs at muon experiments

Lorenzo Calibbi (Nankai)

What about high-energy leptonic colliders?

Flavour-conserving couplings to muons can be also tested at colliders, e.g. at the Tera-Z factory runs of future e⁺e⁻ colliders such as the CEPC:

ALPs at muon experiments

Summary

A wide class of new physics models entails axions/ALPs with flavour-violating couplings to SM leptons

Old searches for muon decays into invisible ALPs already tested new physics scales up to 10⁹ GeV

These searches are complementary to tau decays, astrophysical/cosmological bounds and are sensitive to regions of the parameter space where ALP can be dark matter

Plenty of new ideas to improve the limit on BR($\mu \rightarrow e a$) by 2-3 orders of magnitude (testing scales above 10¹⁰ GeV). Future high-energy colliders can play an important role too

We have huge room for improvement over old limits: next generation experiments may discover axions with muons!

Thanks!

Additional slides

Summary of the model-independent bounds

Comparison in the case $m_a \approx 0$

$$\mathcal{L}_{a\ell\ell} = \frac{\partial^{\mu}a}{2f_a} \left(C_{ij}^V \ \overline{\ell}_i \gamma_{\mu} \ell_j + C_{ij}^A \ \overline{\ell}_i \gamma_{\mu} \gamma_5 \ell_j \right) \qquad F_{ij}^{V,A} \equiv \frac{2f_a}{C_{ij}^{V,A}} \qquad F_{ij} \equiv \frac{2f_a}{\sqrt{|C_{ij}^V|^2 + |C_{ij}^A|^2}}$$

Present best limits						
Process	BR Limit	Decay constant	Bound (GeV)	Experiment		
Star cooling	_	F^A_{ee}	4.6×10^9	WDs [44]		
	_	$F^A_{\mu\mu}$	$1.6 imes 10^6$	$SN1987A_{\mu\mu}$ [45]		
	4×10^{-3}	$F_{\mu e}$	1.4×10^8	SN1987 $A_{\mu e}$ (Sec. 6.1)		
$\mu \to e a$	$2.6\times10^{-6*}$	$F_{\mu e} \ (V {\rm or} A)$	4.8×10^9	Jodidio at al. $[9]$		
$\mu \to e a$	$2.5\times10^{-6*}$	$F_{\mu e} \ (V+A)$	4.9×10^9	Jodidio et al. $[9]$		
$\mu \to e a$	$5.8\times10^{-5*}$	$F_{\mu e} \ (V - A)$	1.0×10^9	TWIST $[10]$		
$\mu \to e a \gamma$	$1.1 \times 10^{-9*}$	$F_{\mu e}$	$5.1 imes 10^{8 \#}$	Crystal Box $[46]$		
$\tau \to e a$	$2.7\times10^{-3**}$	$F_{ au e}$	$4.3 imes 10^6$	ARGUS $[43]$		
$ au o \mu a$	$4.5 \times 10^{-3**}$	$F_{ au\mu}$	$3.3 imes 10^6$	ARGUS [43]		

ALPs at muon experiments

<u>Crystal Box 1988</u>

Analysis for massless familon $m_a \approx 0$ (with 1.4×10¹² stopped μ^+) yields:

$$BR(\mu \to e \, a \, \gamma) < 1.1 \times 10^{-9} \quad (90\% \text{ CL})$$

$$BR(\mu \to e \, a \, \gamma) \approx \frac{\alpha_{em}}{2\pi} \mathcal{I}(x_{\min}, y_{\min}) BR(\mu \to e \, a)$$
Hirsch et al. '09

$$\mathcal{I}(x_{\min}, y_{\min}) = \int_{x_{\min}, y_{\min}}^{1} dx dy \frac{(x-1)(2-xy-y)}{y^2(1-x-y)}$$

$$x = 2E_e/m_\mu \qquad y = 2E_\gamma/m_\mu$$

Crystal Box energy thresholds:

$$E_e > 38 - 43 \text{ MeV}$$
, $E_\gamma > 38 \text{ MeV} \Rightarrow x_{\min} = 0.72 - 0.81$, $y_{\min} = 0.72$

$$\Rightarrow$$
 $F_{e\mu} > (5.1 - 8.3) \times 10^8 \text{ GeV}$

weaker but independent of V/A nature of the couplings

ALPs at muon experiments

- How generic is a PNGB with flavour-violating couplings to leptons?
- Can we test ALPs with LFV beyond stars?
- That is, how are FC and FV couplings related (F_{ee} , $F_{\mu e}$, etc.) ?

To answer these questions, we need to consider specific models

• LFV QCD axion:

QCD axion (DSFZ type) with leptons carrying non-universal PQ

• LFV axiflavon:

QCD axion obtained by identifying PQ = Froggatt-Nielsen U(1) (FV axion-quark couplings suppressed by an additional flavour SU(2))

• Leptonic familon

PNGB from spontaneously broken Froggatt-Nielsen U(1) (acting on leptons only)

• Majoron

spontaneously broken lepton number (in the context of low-energy seesaw)

LFV QCD axion

ALPs at muon experiments

LFV QCD axion

ALPs at muon experiments

Majoron

Spontaneous breaking of the lepton number:

ALPs at muon experiments

Majoron

Spontaneous breaking of the lepton number:

$$\frac{1}{2}\lambda_N \sigma \bar{N}^c N, \quad \sigma = \frac{f_N + \hat{\sigma}}{\sqrt{2}} e^{iJ/f_N} \implies M_N = \lambda_N f_N / \sqrt{2}$$
PNGB: Majoron! Chikashige Mohapatra Peccei '80

Couplings to SM fermions:

$$C_{q_{i}q_{j}}^{V} = 0, \qquad C_{q_{i}q_{j}}^{A} = -\frac{T_{3}^{q}}{16\pi^{2}}\delta_{ij}\operatorname{Tr}\left(Y_{N}Y_{N}^{\dagger}\right), \\ C_{\ell_{i}\ell_{j}}^{V} = \frac{1}{16\pi^{2}}\left(Y_{N}Y_{N}^{\dagger}\right)_{ij}, \qquad C_{\ell_{i}\ell_{j}}^{A} = \frac{1}{16\pi^{2}}\left[\frac{\delta_{ij}}{2}\operatorname{Tr}\left(Y_{N}Y_{N}^{\dagger}\right) - (Y_{N}Y_{N}^{\dagger})_{ij}\right] \\ \text{Generically flavour-violating, (V-A)} \qquad \begin{array}{c} \operatorname{Pilaftsis} \operatorname{'94} \\ \operatorname{Garcia-Cely Heeck} \operatorname{'17} \end{array}$$

ALPs at muon experiments

Majoron

Lepton number anomaly free: suppressed coupling to photons ($E_{UV}=0$)

$$\Gamma(a \to \gamma \gamma) = \frac{\alpha_{\rm em}^2 E_{\rm eff}^2}{64\pi^3} \frac{m_a^3}{f_a^2}, \qquad m_a \ll m_{\ell_i} : \ E_{\rm eff} \simeq E_{\rm UV} \qquad \mathcal{L}_{\rm eff} = E_{\rm UV} \frac{\alpha_{\rm em}}{4\pi} \frac{a}{f_a} F \tilde{F}$$

ALPs at muon experiments