

Generation of TeV muon by laser plasma accelerator

Xueqing Yan, Xuezhi Wu, Xinlu Xu Peking University

> Jinqing Yu Hunan University

> > 2024.04

Introduction and motivation

- Acceleration of slow muon
- TeV muon acceleration
- Outlook

Lser Electron Accelerator

•1979年, Tajima and Dawson首先提出LPA.

John M Dawson (1930-2001)

Volume 43, Number 4

PHYSICAL REVIEW LETTERS

Toshiki Tajima

23 July 1979

Laser Electron Accelerator

T. Tajima and J. M. Dawson Department of Physics, University of California, Los Angeles, California 90024 (Received 9 March 1979)

An intense electromagnetic pulse can create a weak of plasma oscillations through the action of the nonlinear ponderomotive force. Electrons trapped in the wake can be accelerated to high energy. Existing glass lasers of power density 10^{18} W/cm² shone on plasmas of densities 10^{18} cm⁻³ can yield gigaelectronvolts of electron energy per centimeter of acceleration distance. This acceleration mechanism is demonstrated through computer simulation. Applications to accelerators and pulsers are examined.

1000 times smaller, and fast!

RF accelerator E = <100MV/m

laser plasma accelerator E > 100GV/m

1000 times smaller!

Nobel prize report

分享201		Accelerator – Tajin disappointed !!!			
			CPA		
美国科学家	大國務 法国科学家 执拉尔·瑞鲁	加拿大科学家 唐娜•斯特里古兰	离	子能量? 教?	Will be Ok OK
Nobel prize repo	ort:		稳	定性? 靠性?	OK OK

At Lawrence Berkeley National Laboratory in California, a petawatt-class laser at the Berkeley Lab Laser Accelerator (BELLA) facility is used to accelerate electrons to 4.2 GeV over a distance of 9 cm [78]. This is an acceleration gradient of at least two orders of magnitude higher than what can be obtained with RF technology. That there are many remaining challenges before laser accelerators can be used for medical applications is well understood [79].

TeV collider by laser accelerator? electron collider ?

Laser Plasma Accelerator Explored For Linear Colliders: Follow Paradigm Of Conventional Accelerators To Increase Beam Energy And Quality

Progress of laser acceleration

Wang, ..., Yan*, Ma*, Nam* Phys. Rev. X 11, 021049 (2021); Ma*, ..., Yan*, et al., Phys. Rev. Lett. (2019);

BUILD THE WORLD' S FIRST MUON COLLIDER ?

There are several possible particle accelerators that could follow the Large Hadron Collider.

■ Higgs factory ■ LHC upgrade

the energy-efficient choice for exploring new physics

10

10 TeV muon collider would provide similar discovery potential to a 100 TeV proton-proton collider (100-km-long Future Circular Collider (FCC-hh)

Muon colliders to expand frontiers of particle physics Nature Physics, VOL 17, 2021, 289–292 (comment)

Challenges of MUON accelerator:

- 1. Short lifetime (2.2 μ s, at rest)
- 2. Large initial phase space of the decay muon: low quality at beginning
- 3. A significant velocity variation during the acceleration: multiple acceleration structure

... ...

Generation of Muon beam

Muon (μ^{\pm})

- An unstable fundamental particle with a short lifetime at rest, 2.2 μs
- Mass: ~207 *m*_e
- Two types: surface muon & decay muon

Muon anomalous magnetic moment measurement

Japan Proton Accelerator Research Complex (J-PARC) muon science facility (MUSE)

IOP Conf. Series: Journal of Physics: Conf. Series 874 (2017) 012055

> Limited by very low conversion efficiency of μ^+ to Mu⁻ : 8×10^{-7}

- > Could be greatly improved by using laser-dissociation ultraslow muon source (also difficult)
- Further acceleration from 89 KeV to 210 MeV: RFQ + drift tube linac (low beta) + disk-andwasher coupled cavity linac(middle beta) + disk loaded traveling wave structures (high beta)

Introduction and motivation

- Output Description of slow muon
- TeV muon acceleration

Outlook

Plasma acceleration of slow muon

Underdense plasma:

- The phase velocity of the wake is close to c, too high to accelerate low-energy muons (0.2c, c is the light speed)
- > High acceleration gradient (100GV/m)

Linear wake

Nonlinear wake

capture and acceleration of 200 MeV Muon

Phys. Plasmas 28, 093101 (2021) Phys. Plasmas 29, 103110 (2022) Phys. Plasmas 31, 023109 (2024)

□ Initial muon speed close to the light speed (~200 MeV or higher)

Ultrashort duration: 10s fs

- \succ The phase velocity of the wake is too high to accelerate low-energy muons (a small fraction of the light speed)
- \succ Slow the wake in the plasma?

- > train should be decelerated at first, passengers are loaded into the train carriages (bucket)

Downramp:

Phase velocity (wavenumber) decreases (increases) with time evolution

Plasma Traveling Wave Acceleration(PTWA)

Muons in buckets from 4 MeV to 200 MeV

Laser Intensity: $a_0 = 0.4$ Duration: $\tau = 34$ fs

Beam energy 4 MeV energy spread $\sigma = 1$ MeV Beam duration 850 fs (could be longer) injection time t = 51 ps

Acceleration gradient: ~11GV/m

Micron beam duration: 100s as ~ a few fs Micron beam energy spread: ~0.1%

Acceleration in different buckets or carriages

Capture efficiency 0.1%-1% with cooling

Could be improved by choosing a higher acceleration phase 24

	RF-based	Plasma-based (PTWA)		
Acceleration gradient	10 MV/m	10 GV/m		
Cooling	Must	Optional		
From low beta to high beta	Multi-stage	Single-stage		
Transverse emittance	0.1 π.mm.mrad	0.1 π.mm.mrad		
Initial muon energy	mono-energetic	large energy spread (1MeV-4MeV)		

Transverse emittance acceptance could be increased by using a wider beam driver₂₆

Introduction and motivation

Output Description of slow muon

TeV muon acceleration

Outlook

Preliminary simulations indicate that TeV protons can drive TeV muon $\hat{}_{10^{-5}}$

~TeV muon acceleration

proton energy	distance	injected energy	final energy
0.1TeV	1.2m	19.3GeV	26.71GeV
1TeV	4.01m	80.4GeV	154.5GeV
7TeV	11.24m	226.3GeV	746.1GeV

by Prof. Jinqing Yu, Hunan university

Introduction and motivation

- Issue of the second second
- TeV muon acceleration

Outlook

Huairou Science City— National Innovation Center

X、 γ、n 等射线

离子刀

Applications in the future

laser accelerator: 1) ion acceleration; 2) X/γ source;3)TeV collider

Beijing Laser Acceleration Innovation Center

The advanced laser accelerator research and application research platform:

1) Mechanism for laser immuno-radiotherapy

2) Laser driven ultrafast particle beam (muon, isotope...)

2022年12月入驻, 2023年验收

Prospects for Laser Accelerator Immunotherapy

<mark>diffuse tumor</mark>

M研究所拟参照李政道研究所、丹麦玻尔研究院、美国普林斯顿高等研究院的建设,引入全球顶尖的科学家,首批引入的科学家包括2018年诺贝尔物理学奖获得者Gerard Mourou和D.Strickland。

外方主任:G.Mourou 或者D.Strickland 中方主任:高原宁

- Muons can be accelerated effectively and efficiently in evolving plasma traveling waves in density-tailored plasma.
- This mechanism exhibits high acceleration gradients and maintains low energy spread and high robustness.
- Attosecond muon/ion pulse trains may enable new paths toward attosecond science using muon/ion beams.
- This acceleration could serve as a crucial bridge for further accelerating muons within nonlinear wakefields to TeV.

Thanks for your attention!

Muon collider

- Compared to electron-positron colliders, much less synchrotron radiation losses
- 10 TeV muon collider would provide similar discovery potential to a 100 TeV proton-proton collider (100-km-long Future Circular Collider (FCC-hh)

A muon collider is expected to be the most energy-efficient choice for exploring new physics

Muon colliders to expand frontiers of particle physics Nature Physics, VOL 17, 2021, 289–292 (comment)

Muon magnetic moment anomaly

PROTONS

Decay muon 3.1 GeV

Muon magnetic moment $(g - 2)\mu/2$ anomaly: explore physics beyond the Standard Model

					nictarget	PIONS				
Table 2 A summary of the deve	lopment of the muon $g - 2$ experiments.					are created Pions de to muo	ecay ns MUONS	Muons are fed into a uniform magnetic field and travel in a circle		
Experiment	Magnet	Approach	γμ	$\delta a_{\mu}/a_{\mu}$			are like tiny magnets spinning on an axis	After each lap the muon's spin axis changes by 12°		
CERN I (1965)	Long dipole magnet, $B = 1.6$ T	μ injection	1	0.4%	NICKEL	_ <mark>≫</mark> 6				
CERN II (1974)	R = 2.5 m storage ring, $B = 1.71$ T	p injection	12	270 ppm			AQ			
CERN III (1978)	R = 7.1 m storage ring, $B = 1.47$ T	π injection	29.3	7.3 ppm						
BNL (2006)	R = 7.1 m storage ring, B = 1.45 T	μ injection	29.3	0.54 ppm	MUON					
FNAL Run-1 (2021)	R = 7.1 m storage ring, $B = 1.45$ T	μ injection	29.3	0.46 ppm	4	· +				
Nuclear Physics	s B 975 (2022) 115675				The muon generates its own magnetic field because of its charge and spin	Particles popping out of the vacuum boost the muon's magnetic field		Muons spontaneously decay to an electron, (plus neutrino), whose energy and direction are recorded in one of 24 detectors. From this, the muon's magnetic moment is reconstructed		
Low emit ~210	tance muon en 199 MeV	More	e com	npact st	orage ring	g	Highe 0	er precision 0.1 ppm		

Phase stability analysis

