

Progress of Muonium-to-Antimuonium Conversion Experiment (MACE)

MIP2024, Peking University

2024-04-21

Shihan Zhao (赵诗涵) on behalf of the MACE working group zhaoshh7@mail2.sysu.edu.cn

Search for cLFV

- Search for charged lepton flavor violation (cLFV):
 - MEGII $\rightarrow \mu \rightarrow e\gamma$
 - Mu3e \rightarrow $\mu \rightarrow eee$
 - COMET
 - Mu2e }
- $\mu N \rightarrow e N$
- cLFV = new physics beyond Standard Model (SM)
 - ✓ cLFV is forbidden in SM.
 - ✓ Many new physics model beyond SM predict cLFV.
 - ✓ Tiny contribution from neutrion oscillation (currently not detectable).
 - > A clear evidence of new physic if found!

 U_{ie}^{\dagger}

W

 $U_{\mu i}$

Muonium conversion: a cLFV process

- Muonium (M = $\mu^+ e^-$): a leptonic isotope of hydrogen.
- **M-M mixing**: an phenomenological possibility leads to **M-to-M conversion**.

$$i\frac{\partial}{\partial t}|\psi\rangle = \mathcal{M}|\psi\rangle \qquad |\psi\rangle = \alpha(t)|\mathbf{M}\rangle + \beta(t)|\overline{\mathbf{M}}\rangle$$

$$\mathcal{M} = \begin{pmatrix} m - i\Gamma/2 & \Delta m/2 - i\Delta\Gamma/4 \\ \Delta m/2 - i\Delta\Gamma/4 & m - i\Gamma/2 \end{pmatrix}$$

$$\mathcal{L} \supset \sum_{i=1}^{5} \frac{-G_{i}(\mathcal{M})}{\sqrt{2}} \langle \overline{\mathbf{M}}|Q_{i}|\mathbf{M}\rangle$$

$$P_{\mathbf{M} \to \overline{\mathbf{M}}}(t) = \begin{pmatrix} P_{\mathbf{M} \to \overline{\mathbf{M}}} \\ 2\tau & t^{2}e^{-t/\tau} \\ 2\tau & t^{2}e^{-t/\tau} \\ Current bound: \\ P_{\mathbf{M} \to \overline{\mathbf{M}}} < 8.3 \times 10^{-11} \\ (in 0.1T field, 90\% C.L.) \end{pmatrix}$$
L. Willmann et al., Phys. Rev. Lett. 82 (1999), 49-52.

- $M \rightarrow \overline{M}$: an $\Delta L_{\mu} = -\Delta L_{e} = 2$ process.
 - ✓ Different EFT operators from $\Delta L_{\mu} = -\Delta L_e = 1$ proc. ($\mu \rightarrow e\gamma$, $\mu \rightarrow eee$, $\mu N \rightarrow eN$).
 - $\checkmark \Delta L_{\mu} = -\Delta L_{e} = 2$ can be possible even if $\Delta L_{\mu} = -\Delta L_{e} = 1$ is suppressed.
 - ✓ Complementary to $\Delta L_{\mu} = -\Delta L_e = 1$ process searches.

T. Fukuyama, Y. Mimura, and Yuichi Uesaka, Phys. Rev. D 105, 015026 (2022). (arXiv: 2108.10736)

(in 0.1T field, 90% C.L.)

How to detect M-to-M conversion?

- Two approaches in history:
 - 1. look for nucleus μ^- capture gamma 2. look for final states (both a fast e^- and a slow e^+)

L. Willmann et al., Phys. Rev. Lett. 82 (1999), 49-52.

Yoshioka's talk yesterday

(J-PARC g-2 muon cooling)

- ✓ Best limits was achieved by looking for antimuonium decay final states.
- Two approaches in the future:
 - 1. Ionize antimuonium and detect nucleus μ^- (proposed in J-PARC)
 - 2. Look for decay final states with even higher precision (MACE)

N.Kawamura et al., JPS Conf. Proc. 33, 011120 (2021)

Signal and background

Suppression of background


```
2. Final state scattering

M \rightarrow e^+ \bar{\nu}_{\mu} \nu_e e^-
```

3. Accidental background

Scattering/conv. e-

Misreconstruction

Cosmic ray, etc.

• Challenge from IC decay background:

 $\bigcirc BR(\mu \rightarrow eeevv) = 3.4 \times 10^{-5}, \text{ High branching}$

fraction even at low e^+ energy:

 $BR(\mu \to eeevv \mid E_k^{1e^+} < 100 \text{ eV}) = 3 \times 10^{-12}$ (LO prediction)

MACE needs

✓ Excellent vertex & time resolution to cut p_{xy} & p_z

5

10

15

 $E_{\nu}^{e^+}/\mathrm{eV}$

20

 10^{-15}

Suppression of background

1. Internal conversion (IC) decay $\mu^+ \rightarrow e^+ e^- e^+ \bar{\nu}_{\mu} \nu_e$

2. Final state scattering $\square M \rightarrow e^+ \bar{\nu}_{\mu} \nu_e e^-$

- 3. Accidental background
- Scattering/conv. e⁻
- □ Misreconstruction
- Cosmic ray, etc.

- Muonium final state scattering background:
 - Final state Bhabha scattering: fast e^+ + slow $e^- \rightarrow$ slow e^+ + fast e^- (signal-like)
 - BR(M $\rightarrow e^+ \bar{\nu}_{\mu} \nu_e e^- | E_{e^-} > 10 \text{ MeV}) \approx 10^{-10}$, estimated by semiclassical Michel spectrum -Bhabha cross section folding.
 - Expected considerably low BR when $E_{e^+} \sim 0$.
 - Detailed background study in progress.
- To reduce accidental background, MACE needs
 - ✓ Excellent vertex & time resolution
 - \checkmark A plused muon beam
 - ✓ Cosmic ray background: cosmic ray veto (design in progress)

Design of MACE

Plan and beamline

	Conceptual design	Phase-I technical design	Phase-I installation & test run	Phase-I physical run	Phase-I analysis & Phase-II engineering	MACE Phase-II	
•	2024	2025	2026	2027	2028	2030+	7
	Phase-I: O(10 ⁻¹¹) sensitivity for rare muonium decay (e.g. M→ee / M→γγ)			Phase-II: O(10 ⁻¹⁴) sensitivity for muonium conversion			
•	Data taking dura	ation: 1 year	 Data taking duration: 1 year 				
Beam condition:				Beam condition:			
	□ Surface muon, 10 ⁵ ~ 10 ⁶ µ ⁺ /s			□ Surface muon, 10 ⁸ µ ⁺ /s			
	Plused or CV	V beam		Plused beam, repetition rate 20 ~ 50 kHz			
	Momentum s	spreading: $\Delta p/p$	< 5%	D Momentum spreading: $\Delta p/p < 3\%$			
Beam spot radius ~10 mm				Beam spot radius < 10 mm			

Why plused beam?

- Plused beam can reduce accidental background.
 - ✓ Beam-related backgrounds (e.g. e⁺ in beam) follow a bunch arrival.
 - \checkmark Scattering e⁻ or photon conversions raise with muon decay.
 - ✓ Signal conversion events are late. CiADS? Hanjie Cai's talk yesterday

SHINE?

Takeuchi's talk

yesterday

- Prompt background ↔ delayed signal
 - Possible to suppress background by specific data taking duration.
- MACE prefer a repetition rate of 20 ~ 50 kHz.

Design and simulation of muonium target

- Intensity of in-vacuum muonium source: $I_{\rm M}^{\rm vac} = I_{\rm beam} Y_{\mu \to {\rm M}}$
- *Y*_{µ→M} can be improved by utilizing porous materials, ideally perforated silica aerogel.
- An simulation method is developed to accurately simulate muonium production and diffusion.

Yoshioka's talk yesterday (J-PARC g-2 muonium target)

- The simulation is validated by muonium yield data measured in TRIUMF.
- Optimize $Y_{\mu \to M}$ in perforated bulk target by scanning parameters, it can achieve
 - ✓ Max $Y_{\mu \to M} = N_M^{\text{vac}} / N_{\mu}^{\text{total}} = 1.134\%$, with 2mm hole depth, $p_{\text{beam}} = 28 \text{ MeV}/c$ and

$$\frac{\sigma_{p_{\text{beam}}}}{p_{\text{beam}}} = 2.5\%.$$

2024/4/24

Shihan Zhao (Sun Yat-sen University)

Design and simulation of muonium target

- A novel multi-layer design is expected considerably increase muonium yields in a vacuum (Ce Zhang et al.).
- The simulation result achieves
 - $\checkmark Y_{\mu \to \mathrm{M}} = N_\mathrm{M}^\mathrm{vac}/N_\mu^\mathrm{total} = 4.08\%$
 - ✓ Nearly an order of magnitude improvement on $N_{\rm M}^{\rm vac}/N_{\mu}^{\rm total}$.
 - > Still room for further optimization.
- Multi-layer target + intensive muon beam → intensive invacuum muonium source:
 - ✓ $I_{\rm M}^{\rm vac} = I_{\rm beam} Y_{\mu \to \rm M} = 4 \times 10^6 / \text{s}$, assuming $I_{\rm beam} = 10^8 / \text{s}$
 - > For comparison, MACS 1990s: $I_{\rm M}^{\rm vac} = 4 \times 10^4/{\rm s}$
 - Expected two orders of magnitude improvements in invacuum muonium source intensity!

Electromagnetic field design

2024/4/24

Shihan Zhao (Sun Yat-sen University)

Electromagnetic field design

- Transmission efficiency w/o collimator: >99%
- Excellent transmission precision: $\sigma_{\Delta x} = 0.197 \text{ mm}, \sigma_{\Delta y} = 0.211 \text{ mm}$
- Magnetic leakage \rightarrow drift along x. Can be fixed by magnetic compensation.

Collimator design

- Collimator selects p_{xy} of transported particles.
 - > Narrowly spaced copper sheets, parallel to z-axis.
 - Sheet thickness: 0.2 mm, optimize pitch accordingly.
- Background level is simulated by McMule LO μ → eeevv,
 MACE detector & simple signal region cut applied.
- Optimize pitch by maximize $\varepsilon_s/(b + 1.5)$.
- Optimization result:
 - ✓ Optimal pitch: 1.15 mm → $p_{xy}^{max} = 14 \text{ keV}/c$
 - ✓ Signal e⁺ efficiency: 68%
 - ✓ Reject 98% of $\mu \rightarrow eeevv$ background

Timing counter design

- Design goal:
 - ✓ High rate capability
 - ✓ Excellent time resolution (<100 ps)</p>
 - ✓ Good spatial resolution (10 cm)
- Specifications:
 - ✓ Two tile coincidence
 - ✓ Overall efficiency same for e⁺ / e⁻
- Preliminary design:
 - Plastic scintillator array
 - ➤ 18 (\$\$) × 42 (z) = 756 tiles
 - Center radius: 480 mm
 - > Slant angle: $\pm 15 \text{ deg}$

Design of calorimeter

- Specification:
 - Excellent energy resolution for background discrimination
 - High signal efficiency
- Geometry:
 - Class I GP(4,0) Goldberg polyhedron
 - 154 inorganic scintillators with PMTs (preliminarily CsI:TI)
 - 97.5% solid angle coverage
 - Inner diameter: 30 cm
 - Crystal length: 15 cm
- Advantages:
 - Large solid angle coverage
 - Symmetry for precise reconstruction
 - Self-supporting structure

Design of calorimeter

- Signal and Background
 - Energy resolution: 8.4% at 0.511 MeV, 6% at 1.022 MeV
 - 68.1% signal efficiency (3σ region)

See Siyuan Chen's poster

Muon IC decay background full simulation

MACE: Towards O(10⁻¹⁴) sensitivity

• During 1 year data taking duration, MACE will produce $N_{\rm M} = 10^8 \mu^+/\text{s} \times 0.04 \text{M}/\mu^+ \times 365 \text{d} = 1.3 \times 10^{14}$ muonium atoms in vacuum.

		Detector / cut	Efficiency
Background	Counts / (10 ⁸ µ/s×365 d)	$\varepsilon_{ m Geom}$	0.61
μ^+ IC decay	0.287 ± 0.020		
-		$\varepsilon_{\rm CDC Recon.}$	~ 0.9
Beam e ⁺	< 0.07	ε _{MCP}	07
Cosmic ray (w/ yeto)	~ 0		0.7
	0	$\mathcal{E}_{\rm FMC}$	0.72
Total	< 1	Lind	07
		$\mathcal{E}_{ ext{cut}}$	~ 0.7

✓ MACE is expected to achieve $O(10^{-14})$ single event sensitivity:

$$SES = \frac{1}{\varepsilon_{Geom} \varepsilon_{CDC Recon} \varepsilon_{MCP} \varepsilon_{EMC} \varepsilon_{cut} N_{M}} = 3 \times 10^{-14}$$

More Physics with MACE detectors

- Multi-electron muon decays:
 - Internal conversion: $\mu^+ \rightarrow e^+ e^- e^+ e^- \overline{\nu}_{\mu} \nu_e$
 - Neutrinoless decay: $\mu^+ \rightarrow e^+ e^- e^+ e^-$
- Muonium decays:
 - Annihilation: $\mu^+ e^- \rightarrow \gamma \gamma$
 - Two-body decay: $\mu^+ e^- \rightarrow e^+ e^-$

Suitable for MACE phase-I

- Exotic decay: $\mu^+ e^- \rightarrow \gamma_d \gamma_d \rightarrow e^+ e^- e^+ e^-$
- Invisible decay: $\mu^+ e^- \rightarrow \overline{\nu}_{\mu} \nu_e$
- Other interesting topics:
 - Search for X(17), dark matter physics
 - Dark photon

MACE Phase-I

 $e^{-}(k)$

 $e^+(k')$

• We propose searching for $M \rightarrow \gamma \gamma$ or $M \rightarrow e^+e^-$ in MACE Phase-I.

 $M_{\mu}(p)$

• Background and sensitivity:

BSN

- Back-to-back crystal accidental coincidence.
- ➤ No SM intrinsic background → backgroundfree search is possible.
- Challenge: event pile up.

Sum of back-to-back energy (MeV)

Μ

•

Shihan Zhao (Sun Yat-sen University)

MACE Phase-I

- We propose searching for M → γγ or M → e⁺e⁻
 in MACE Phase-I.
- Detector: EMC & inner tracker & cosmic ray veto & Target.
 - Scintillator
 - CsI(TI): excellent energy resolution, slow decay
 - LYSO: balance with good energy resolution and fast response
 Be

Inner tracker might be needed for PID

 Estimated to achieve O(10⁻¹¹) SES in one year data taking duration.

Summary and outlook

- cLFV, a neutrino-less lepton flavor violating process, is forbidden in SM. Precise (high-intensity) experiment searching for cLFV, is an sensitive probe of BSM.
- MACE is the first proposed muonium-to-antimuonium conversion experiment since 1999, with the development of high-intensity muon beam and detector technology, the sensitivity is expected to enhance by more than two orders of magnitude.
- Together with other flavor and collider searches, MACE will shed light on the mystery of the cLFV and new physics.

Thanks!

MACE working group list

Ai-Yu Bai,1 Hanjie Cai,2 Xurong Chen,2 Siyuan Chen,1 Weibin Cheng,3 Yu Chen,1 Yukai Chen, 4 Rui-Rui Fan, 4 Li Gong, 3 Zhilong Hou, 4 Huan Jia, 2 Han-Tao Jing, 4 Xiaoshen Kang, 3 Hai-Bo Li,4, 5 Yang Li,4 Guihao Lu,1 Han Miao,4, 5 Yunsong Ning,1 Huaxing Peng,4, 5 Alexey A. Petrov, 6 Ying-Peng Song, 4 Mingchen Sun, 1 Jian Tang, 1 Jing-Yu Tang, 4 Nikolaos Vassilopoulos, 4 Sampsa Vihonen, 1 Chen Wu, 7 Rong Wang, 2 Weizhi Xiong, 8 Tian-Yu Xing,4, 5 Yu Xu,1 Ye Yuan,4, 5 Yao Zhang,4 Guang Zhao,4 Shihan Zhao,1 and Luping Zhou4 1 School of Physics, Sun Yat-sen University, Guangzhou 510275, China 2 Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000, China 3 School of Physics, Liaoning University, China 4 Institute of High Energy Physics, Chinese Academy of Science Beijing 100049, China 5 University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China 6 Department of Physics and Astronomy Wayne State University, Detroit, Michigan 48201, USA 7 Research Center of Nuclear Physics (RCNP), Osaka University, Japan 8 Institute of Frontier and Interdisciplinary Science, Shandong University

Acknowledgement

Ce Zhang (Liverpool U.), Kim Siang Khaw (TDLI), Liang Li (SJTU), Yu Bao (CSNS), Lorenzo Calibbi (NKU), Linyun Dai (HNU),

Collaboration welcome!

Backup

MACE dimensions

2024/4/24

Shihan Zhao (Sun Yat-sen University)

MACS

• Search for M-to- \overline{M} conversion at PSI in 1990s:

 $ightarrow P_{M\to \overline{M}}$ < 8.3 × 10⁻¹¹ (in 0.1T field, 90% C.L.)

- Muonium source:
 - DC muon beam, $8 \times 10^{6} \mu^{+}/s$, p = 26 MeV/c, $\Delta p/p = 5\%$
 - SiO₂ powder target: 0.5% $\mu^+ \rightarrow M_{vac}$ rate
- During 1730 hr data taking:
 - $N_{\rm M} = 5.6 \times 10^{10}$

L. Willmann et al. New bounds from searching for muonium to antimuonium conversion, Phys.Rev.Lett. 82 (1999), 49-52.

Shihan Zhao (Sun Yat-sen University)

Design and simulation of muonium target

- Intensity of in-vacuum muonium source: $I_{\rm M}^{\rm vac} = I_{\rm beam} Y_{\mu \to {\rm M}}$
- Y_{µ→M} can be improved by utilizing porous materials, ideally perforated silica aerogel.
- An simulation method is developed to accurately simulate muonium production and diffusion.
- The simulation is validated by muonium yield data measured in TRIUMF and J-PARC.

Shihan Zhao and Jian Tang, Optimization of muonium yield in perforated silica aerogel, Phys. Rev. D accepted. arXiv 2401.00222

(e) Perforated target, region 2

Shihan Zhao (Sun Yat-sen University)

(d) Perforated target, region 1

(f) Perforated target, region 3

Muonium yield simulation

MC simulation for muonium transport has been developed under the μ^+

MACE offline software framework.

D Geant4 low-energy EM process.

Μ

- Geant4 AtRest process, modeled phenomenologically.
- ③ Random walk approach to thermal muonium tracking.

2024/4/24

Shihan Zhao (Sun Yat-sen University)

Collimator

Pass probability esimate by

$$r_{xy} = \frac{p_{xy}}{eB}$$
, $d_{xy} = 2r_{xy}$

$$p_{\text{pass}} = \begin{cases} \frac{D - d - d_{xy}}{D} & 0 < d_{xy} < D - d\\ 0 & \text{else} \end{cases}$$

Shihan Zhao (Sun Yat-sen University)

Design of cylindrical drift chamber

- Design goal:
 - ✓ Large acceptance
 - ✓ High rate capability
 - ✓ Excellent vertex resolution (O(1) mm)
 - ✓ Good momentum resolution (O(1) MeV in 0.1 T field)
- Specifications:
 - ✓ Near-square drift cell, minimum deformation
 - ✓ Alternated axial / stereo layer
- Preliminary design:
 - > 7 (super) \times 3 (sense) = 21 layers
 - > 12 stereo layers, 9 axial layers
 - Cell width: 8 mm ~ 12 mm
 - Length: 1.2 m (inner) / 1.6 m (outer)
 - Radius: 150 mm (inner) / 417 mm (outer)
 - Acceptance: 89% ~ 97%
 - Stereo layer angle: 6 deg at minimum
 - ➢ Gas: He:C₄H₁₀ = 85:15

Design of cylindrical drift chamber

- We have developed an parameterized drift chamber geometry, allowing us to continue to optimize the geometry design of drift chamber.
- Figure: generated drift chamber preliminary design. Wires are scaled to be clearly visible (blue: field wire, red: sense wire).

Simulation of magnetic spectrometer

Signal simulation

50

40

30 20

10 0 DCA [mm] 0 -10

-20

Signal distribution

90029

Entries Mean x 0.04749

Mean y 0.02169

- TOF_F = 121.1 ns
- $\sigma_{\Delta TOF} = 0.58$ ns, $\sigma_{DCA} = 2.2$ mm
- Elliptical 3o signal region: ٠

$$\left(\frac{\mathrm{TOF} - \mathrm{TOF}_{\mathrm{E}}}{3\sigma_{\mathrm{TOF}}}\right)^{2} + \left(\frac{\mathrm{DCA}}{3\sigma_{\mathrm{DCA}}}\right)^{2} < 1$$

Shihan Zhao (Sun Yat-sen University)

15

DCA [mm]

20

90029

2550

3698

 0.03507 ± 0.01145

1.897e+05 / 144

 0.01073 ± 0.00905

0.07579 ± 0.05251

10

2611±42.9

 1.391 ± 0.020

 751.4 ± 46.0

 3.874 ± 0.124

15

More Physics with MACE detectors

- More than μ :
 - X17 anomaly in $^{7}\text{Li}(p, e^{+}e^{-})^{8}\text{Be}$

PhysRevLett.116.042501

