MEASURING HIGGS BOSON SELF-COUPLINGS WITH 2 \rightarrow 3 VBS

Junmou Chen (Jinan University, Guangdong)

at MIP2024

Based on 2105.11500, 2112.12507 In collaboration with Yongcheng Wu, Chih-Ting Huang, Tong Li, Chang-Yuan Yao

OUTLINE

■ 1. Motivation

2. Physical Analysis and Strategy

3. Simulation and results

Higgs Discovery – Completion of SM 1. Motivation

UNFINISHED BUSINESS: 1. Motivation

- Many Higgs couplings haven't been not measured precisely
- Higgs self-couplings still haven't been not measured at all.
- Direct related the shape of Higgs Potential, and therefore the origin of EW symmetry breaking

New Colliders

■ Hadron collider: HE-LHC(27 TeV), 100 TeV and etc.

<u>1902.04070</u>, 1902.00134, 1607.01831

■ e+e- collider:

250 GeV-260 GeV: ILC, CEPC 1810.09037, 1903.01629 1-5 TeV: CLIC

hep-ph/0412251

Muon collider

3, **10**, **14 TeV** *2103.14043, 2303.08533*

High energy & clean environment

Main Channel 1. Motivation for Higgs self-coupling measurement • LHC: $gg \rightarrow hh(pp \rightarrow hh)$

Future muon collider: $WW/ZZ \rightarrow hh (\mu\mu \rightarrow \nu\nu(/\mu\mu)hh)$

2008.12204

Another approach:

1. Motivation

1. Higgs field in SM: Higgs boson and would-be Goldstone bosons form a SU(2) doublet:

$$\Phi^{\pm} = \begin{pmatrix} \phi^{\pm} \\ \frac{1}{\sqrt{2}}(h+i\phi^0) \end{pmatrix}$$

2. Goldstone equivalence theorem

3. New approach: Measuring Higgs couplings through V_L .

Our focus: 2>3 Vector Boson Scattering

1. Motivation

Muon collider especially suitable for this prcess

Parameterization scheme: SMEFT.

2. SMEFT and Amplitudes

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \frac{c_i \mathcal{O}_i}{\Lambda^2} + \mathcal{O}(\frac{1}{\Lambda^3})$$

Dim-6 operators related to Higgs physics

$$\mathcal{L}_{\dim -6} = \frac{1}{\Lambda^2} \left(c_6 (\Phi^{\dagger} \Phi)^3 + c_{\Phi_1} \partial^{\mu} (\Phi^{\dagger} \Phi) \partial_{\mu} (\Phi^{\dagger} \Phi) + c_{\Phi_2} (\Phi^{\dagger} D^{\mu} \Phi)^* (\Phi^{\dagger} D_{\mu} \Phi) \right. \\ \left. + c_{\Phi^2 W^2} \Phi^{\dagger} \Phi W^a_{\mu\nu} W^{a\mu\nu} + c_{\Phi^2 B^2} \Phi^{\dagger} \Phi B_{\mu\nu} B^{\mu\nu} + c_{\Phi^2 W B} \Phi^{\dagger} \tau^a \Phi W^a_{\mu\nu} B^{\mu\nu} \right. \\ \left. + c_{W^3} \epsilon^{abc} W^{a\nu}_{\mu} W^{b\rho}_{\nu} W^{b\mu}_{\rho} \right)$$

• Under GET, only \mathcal{O}_6 , \mathcal{O}_{Φ_1} contribute to the Higgs selfcoupling(s). Our focus.

2. SMEFT and Amplitudes

2>3 VBS amplitude in high energy

In high energy limit, new physics is very sensitive to new physics for $V_L V_L \to V_L V_L h$ & $V_L V_L \to hhh$

The amplitudes behave as

$$\frac{\mathcal{A}^{BSM}}{\mathcal{A}^{SM}} \sim \frac{E^2}{\Lambda^2}$$

2. SMEFT and Amplitudes Feynman diagrams(GET)

 $\mathcal{A}_1^{SM} \sim \frac{v}{E^2}.$

 $\mathcal{A}_1^{BSM} \sim \frac{v}{\Lambda^2}.$

$$\begin{array}{c} \phi^+ & \phi^+ \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \phi^- & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$$

$$A_2 \simeq A_2^a + A_2^b + A_2^c \sim \frac{v}{\Lambda^2} + \frac{v}{E^2}$$

$$\mathcal{A}_0 \sim rac{v}{\Lambda^2}.$$

 $\mathcal{A}^{\rm SM} \simeq \frac{v}{E^2} \qquad \mathcal{A}^{\rm BSM} \simeq \frac{v}{\Lambda^2}$

$$\frac{\mathcal{A}^{BSM}}{\mathcal{A}^{SM}} \sim \frac{E^2}{\Lambda^2}$$

3.2 Partonic cross section and Constraints

3.2 Full Processes

3. Cross Section and Constraints

$$l^{+}l^{-} \rightarrow \nu_{l}\bar{\nu}_{l}W_{L}^{+}W_{L}^{-}h \qquad l^{+}l^{-} \rightarrow \nu_{l}\bar{\nu}_{l}hhh$$
$$pp \rightarrow jjW_{L}^{\pm}W_{L}^{\pm}h \qquad pp \rightarrow jjhhh$$

Lepton colliders: 1-30 TeV

Hadron colliders: 14, 27, 100 TeV

Simulation settings:

Select final vector bosons to be longitudinal
 Impose PT cuts on final VL to reduce SM background.

Cross sections (pb) for $\mu^+\mu^- \rightarrow \nu_\mu \bar{\nu}_\mu W^+_L W^L h$ with $c_{\Phi_1} = 0$								
c_6	-2	-1	0	1	2			
1 TeV	4.17×10^{-9}	1.57×10^{-9}	8.22×10^{-10}	1.93×10^{-9}	4.90×10^{-9}			
3 TeV	1.79×10^{-6}	6.98×10^{-7}	3.71×10^{-7}	8.01×10^{-7}	$2.00 imes 10^{-6}$			
5 TeV	$6.10 imes 10^{-6}$	$2.43 imes 10^{-6}$	1.32×10^{-6}	2.74×10^{-6}	$6.72 imes 10^{-6}$			
10 TeV	1.94×10^{-5}	$7.98 imes 10^{-6}$	4.38×10^{-6}	8.74×10^{-6}	$2.09 imes10^{-5}$			
14 TeV	2.99×10^{-5}	1.25×10^{-5}	7.11×10^{-6}	$1.36 imes 10^{-5}$	3.22×10^{-5}			
30 TeV	6.45×10^{-5}	$2.82 imes 10^{-5}$	1.58×10^{-5}	$2.95 imes 10^{-5}$	$6.68 imes 10^{-5}$			

Table 1: The cross section for $\mu^+\mu^- \rightarrow \nu_{\mu}\bar{\nu}_{\mu}W_L^+W_L^-h$ with $c_{\Phi_1} = 0$ at different c.m. energies. Five benchmark points of c_6 are displayed in different columns. The cuts $m_{\nu\nu} > 150 \text{ GeV}, p_T(W, h) > 150 \text{ GeV}$ are implemented to obtain these cross sections.

Cross sections (pb) for $\mu^+\mu^- \rightarrow \nu_\mu \bar{\nu}_\mu W^+W^-h$ with $c_{\Phi_1} = 0$								
c_6	-2	-1	0	1	2			
1 TeV	2.87×10^{-8}	2.51×10^{-8}	$2.37 imes 10^{-8}$	2.44×10^{-8}	$2.73 imes 10^{-8}$			
3 TeV	2.04×10^{-5}	1.90×10^{-5}	1.85×10^{-5}	1.88×10^{-5}	$2.01 imes 10^{-5}$			
5 TeV	$8.18 imes 10^{-5}$	$7.74 imes 10^{-5}$	$7.60 imes 10^{-5}$	$7.72 imes 10^{-5}$	$8.07 imes 10^{-5}$			
10 TeV	$3.16 imes 10^{-4}$	$3.02 imes 10^{-4}$	$3.00 imes 10^{-4}$	$3.02 imes 10^{-4}$	$3.13 imes 10^{-4}$			
14 TeV	5.29×10^{-4}	5.12×10^{-4}	$5.03 imes 10^{-4}$	5.06×10^{-4}	5.29×10^{-4}			
30 TeV	$1.38 imes 10^{-3}$	1.31×10^{-3}	$1.31 imes 10^{-3}$	$1.33 imes 10^{-3}$	$1.36 imes 10^{-3}$			

Background Analysis

 $\mu^+\mu^- \to \nu_\mu \bar{\nu}_\mu W^+ W^- h$ (WW fusion).

Channel: $W^{\pm} \rightarrow l^{\pm}vl$; $W^{\mp} \rightarrow jj'$ $h \rightarrow bb$ Signal: $l^{\pm}jj'b\bar{b} + MET$

Background

 $\mu^+\mu^- \to t\bar{t}, \ \nu_\mu\bar{\nu}_\mu t\bar{t}, \ W^+W^-Z, \ \nu_\mu\bar{\nu}_\mu W^+W^-Z \text{ and } \gamma\gamma \to t\bar{t}$

Figure 12: The allowed region for c_6 (red) and c_{Φ_1} (blue) from different channels. The darker color indicates the 1- σ region, while lighter one indicates the 2- σ region. The hatcheve a standard in the dark end of the three energy event (-2, 2]. background analysis.

Channels	\sqrt{s} (TeV)	coupling (TeV ⁻²)	1σ	2σ
WWh	10 TeV	c_6/Λ^2	[-0.856, 0.940]	[-1.245, 1.327]
		c_{Φ_1}/Λ^2	[-0.318, 0.424]	[-0.477, 0.571]
	30 TeV	c_6/Λ^2	[-0.447, 0.389]	[-0.627, 0.569]
		c_{Φ_1}/Λ^2	[-0.0378, 0.0657]	[-0.0591, 0.0867]
ZZh	30 TeV	c_6/Λ^2	[-1.329, 1.136]	[-1.881, 1.691]
		c_{Φ_1}/Λ^2	[-0.0688, 0.0852]	[-0.103, 0.119]
hhh	10 TeV	c_6/Λ^2	[-0.926, 0.796]	[-1.316, 1.201]
		c_{Φ_1}/Λ^2	[-0.282, 0.351]	[-0.430, 0.505]
	30 TeV	c_6/Λ^2	[-0.354, 0.342]	[-0.493, 0.458]
		c_{Φ_1}/Λ^2	[-0.0324, 0.0576]	[-0.0545, 0.0760]

TABLE IV. The summary table of the expected sensitivities to the couplings at 1σ and 2σ for the three processes WWh, ZZh, and hhh for $\sqrt{s} = 10$ TeV and $\sqrt{s} = 30$ TeV. The tagging efficiency of longitudinal polarizations is assumed to be 100%.

Significance with varying helicity tagging efficiency

Conclusions

- 2→3 VBS includes: $V_L V_L \rightarrow V_L V_L h$, $V_L V_L \rightarrow hhh$
- Amplitude of 2→3 VBS is very sensitive to new physics on higgs self-couplings.
- Special settings in data and analysis:
 1)select long. pol.; 2)impose PT cuts
- $W^+W^- \rightarrow W^+W^-h$ and $W^+W^- \rightarrow hhh$. are good channels to measure Higgs self-couplings, in 100 TeV pp collider, and especially future muon colliders.
- Similar analysis can be applied to top Yukawa(working on progress)

Figure 9: The vary of cross sections for $c_6 = \pm 1, \pm 2$ with $c_{\Phi_1} = 0$ and $c_{\Phi_1} = \pm 1, \pm 2$ with $c_6 = 0$ for $\mu^+\mu^- \rightarrow \nu_\mu \overline{\nu}_\mu hhh$ from $\sqrt{s} = 1$ to 30 TeV (left panel) and $pp \rightarrow jjhhh$ from $\sqrt{s} = 14$ to 100 TeV (right panel).

Cross section for final hhh sensitive to c_6 and c_{Φ_1} .