Multi-body final states production in electron-positron annihilation and their contributions to (g-2)_μ

Lingyun Dai Hunan University

with B.H. Qin, Jia-Yu Zhou, S.J.Wang, W. Qin, J. Portoles, et.al.

Based on: arxiv: 2403.14294, JHEP07 (2023) 037, RPP84 (2021) 076201, JHEP03 (2021) 092, PRD99 (2019) 114015, PRD97 (2018) 036012, PRD95 (2017) 056007, PRD94 (2016) 116061, PRD90 (2014) 036004, PLB736 (2014) 11, PRD88 (2013) 056001, et. al.

MIP 2024 Apr 2024, Beijing

Outlines

Introduction: muon g-2

- Why muon? life time is long: 2.2 μs , τ ---2.9 × 10⁻⁷ μs
- Sensitive to new physics (M²)

439 rounds in Fermi's ring!

- Elementary particle: g is close to 2.
 - Electron: g=2.00231930436152(56) [PDG2022], close to theoretical prediction $g = 2[1 + \frac{\alpha}{4\pi} + O(\alpha^2)]$
 - Composite particle: g=5.6 for proton and g=-3.8 for neutron.
 See also Liang Li's

See also Liang Li's talk at Hunan university

Muon g-2: one of the most precise indicator of new physics

J-PARC

BNL E821 J-PARC E3 g-2: 0.46 ppm \rightarrow 0.37 ppm (\rightarrow 0.1ppm) 50 times of number of events as large as BNL's to 0.46ppm

2001, 2009, 2025?

FNAL

Run1: only 6% of full statistics used now Run2-3: analyzing, factor 2 improvment Run4: 13 times as large as BNL's Run5: 20 times as large as BNL's

2017, 2021, 2023.....

uncertainty from SM

??? New physics? g-2 theory v.s. experiment large uncertainty SM: HLbL, HVP	$a_{\mu} = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{EW}} + a_{\mu}^{\text{QCD}}$ • HVP, HLbL?		
SM:QED+EW+QCD		values (×10 ⁻¹¹)	
Phys.Rev.Lett.126, 141801 (2021) Phys.Rev.D 73, 072003 (2006).	QED	116584718.931(104)	
	EW	153.6(1.0)	
	HVP	6845(40)	
	HLBL	92(18)	
	SM	116591810(43)	
Phys.Rept.887(2020)1 ←	exp.(BNL)	116592089(63)	
	exp.(FNAL)	116592040(54)	
	exp.(avg.)	116592061(41)	
	a_{μ}^{SM} - a_{μ}^{exp}	251(59)	

Science and Technology Cooperation Program in High Energy Physics. This review benefited from discussions with O. Catà, N. Christ, L.Y. Dai, H. Davoudiasl, S. Fayer, S. Ganguly, A. Gasparian, S. Hashimoto, T. Iijima, K. Kampf, D. Kawall, I. Larin, Z. Pagel, M. Petschlies, A. Rebhan, K. Schilcher, K. Shimomura, E. Shintani, D. Steffen, S. Tracz, C. Tu, and T. Yamazaki.

QED

- The most contribution
- Precise prediction
- At 10-th order, $O(\alpha^5)$

 $a_{\mu} = 116\ 584\ 718.951\ (0.080)\ \times\ 10^{-11}$

Aoyama *et.al.*, PRL109 (2012) 111808

EW+Strong interactions

Precise prediction

$$a_{\mu} = 153.6 (1.0) \times 10^{-12}$$

Strong interactions: pQCD---high energy region

Phys.Rept.887(2020)1

2. Framework

Hadronic Part: Methods from SM

- LQCD
- Data-driven solutions from experiment
- Amplitude analysis: model independent

- Only one physical amplitude!
- It should satisfy the fundamental QFT principles
- It should be compatible with the exp results

Amplitude analysis: FSI

- Most resonances decays into light pseudoscalars
- FSI needs to be taken into account to perform an amplitude analysis
- Methods: KM, N/D, AMP, Roy equation, PKU, Pade, LSE, BSE, ChEFT, *et.al.*

Different energy regions

- QCD: high energy region
- Dispersive approach: Roy, KT, PKU, etc., difficult to deal with multi-body rescattering
- ChPT: works in the very low energy region
- RChT: extend to a bit higher energy region

$$a_{\mu}^{\text{had}} = \left(\frac{\alpha_e(0)m_{\mu}}{3\pi}\right)^2 \int_{s_{\text{thr}}}^{\infty} \mathrm{d}s \frac{\hat{K}(s)}{s^2} R_{\text{h}}(s)$$

Low energy physics dominates

RChT

Resonances included as new degrees of freedom

$$R \equiv \frac{1}{\sqrt{2}} \sum_{i=1}^{8} \lambda_i \phi_R^i$$

• Construct Lagrangians by discrete and chiral symmetries $\mathcal{L}_{kin}^{R} = -\frac{1}{2} \langle \nabla^{\lambda} R_{\lambda \mu} \nabla_{\nu} R^{\nu \mu} \rangle + \frac{M_{R}^{2}}{4} \langle R_{\mu \nu} R^{\mu \nu} \rangle, \quad R = V, A,$

$$\mathcal{L}^R_{\mathrm{kin}} = rac{1}{2} \langle
abla^\mu R
abla_
u R - M^2_R R^2
angle \,, \qquad R = S, P \,.$$

$$\mathcal{L}_{(4)}^{R} = \sum_{i=1}^{22} \lambda_{i}^{V} \mathcal{O}_{i}^{V} + \sum_{i=1}^{17} \lambda_{i}^{A} \mathcal{O}_{i}^{A} + \sum_{i=1}^{18} \lambda_{i}^{S} \mathcal{O}_{i}^{S} + \sum_{i=1}^{13} \lambda_{i}^{P} \mathcal{O}_{i}^{P}$$

$$\mathcal{L}_{(2)}^{RR} = \sum_{(ij)n} \lambda_{n}^{R_{i}R_{j}} \mathcal{O}_{n}^{R_{i}R_{j}},$$

$$i \quad \text{Operat}$$

$$\mathcal{L}_{(0)}^{RRR} = \sum_{(ijk)} \lambda_{n}^{R_{i}R_{j}R_{k}} \mathcal{O}_{n}^{R_{i}R_{j}R_{k}}.$$

i	Operator \mathcal{O}_i^{RR} , $R = V, A$	Operator \mathcal{O}_i^{SS}	Operator \mathcal{O}_i^{PP}
1	$\langle {\cal R}_{\mu u} {\cal R}^{\mu u} {\it u}^lpha {\it u}_lpha angle$	$\langle{\tt S}{\tt S}{\tt u}_\mu{\tt u}^\mu angle$	$\langle {\cal P} {\cal P} u_\mu u^\mu angle$
2	$\langle {\cal R}_{\mu u} {\it u}^lpha {\cal R}^{\mu u} {\it u}_lpha angle$	$\langle{\sf S}{\it u}_{\mu}{\sf S}{\it u}^{\mu} angle$	$\langle {\cal P} {\it u}_{\mu} {\cal P} {\it u}^{\mu} angle$
3	$\langle {\cal R}_{\mulpha} {\cal R}^{ ulpha} {\it u}^{\mu} {\it u}_{ u} angle$	\langle S S χ_+ $ angle$	$\langle P P \chi_+ \rangle$
4	$\langle {\cal R}_{\mulpha} {\cal R}^{ ulpha} {\it u}_{ u} {\it u}^{\mu} angle$		
5	$\langle{\sf R}_{\mulpha}({\it u}^{lpha}{\sf R}^{\mueta}{\it u}_{eta}+{\it u}_{eta}{\sf R}^{\mueta}{\it u}^{lpha}) angle$		
6	$\langle {\cal R}_{\mu u} {\cal R}^{\mu u} \chi_+ angle$		
7	$i\langle {\cal R}_{\mulpha} {\cal R}^{lpha u} f_{+eta u} angle g^{eta\mu}$		

Tensors

 Tensors included as new degrees of freedom

$$T_{\mu\nu} = \begin{pmatrix} \frac{a_2^0}{\sqrt{2}} + \frac{f_2^8}{\sqrt{6}} + \frac{f_2^0}{\sqrt{3}} & a_2^+ & K_2^{*+} \\ a_2^- & -\frac{a_2^0}{\sqrt{2}} + \frac{f_2^8}{\sqrt{6}} + \frac{f_2^0}{\sqrt{3}} & K_2^{*0} \\ K_2^{*-} & \bar{K}_2^{*0} & -\frac{2f_2^8}{\sqrt{6}} + \frac{f_2^0}{\sqrt{3}} \end{pmatrix}_{\mu\nu}$$

- Effective Lagrangians
- Linearly independent terms
 - Equations of motion
 - Total derivative
 - Schouten identity

 $\mathcal{O}_{\mathrm{TJP}}^{1} = i\varepsilon_{\mu\nu\rho\sigma} \langle [T^{\mu\alpha}, f_{+}^{\rho\sigma}] \nabla_{\alpha} u^{\nu} \rangle,$ $\mathcal{O}_{\mathrm{TJP}}^{2} = i\varepsilon_{\mu\nu\rho\sigma} \langle [\nabla^{\nu}T_{\alpha}^{\mu}, f_{+}^{\rho\sigma}] u^{\alpha} \rangle,$ $\mathcal{O}_{\mathrm{TJP}}^{3} = i\varepsilon_{\mu\nu\rho\sigma} \langle [\nabla^{\nu}T_{\alpha}^{\mu}, f_{+}^{\rho\alpha}] u^{\sigma} \rangle.$ $\mathcal{O}_{\mathrm{TVP}}^{1} = i\varepsilon_{\mu\nu\rho\sigma} \langle [T^{\mu\alpha}, V^{\rho\sigma}] \nabla_{\alpha} u^{\nu} \rangle,$ $\mathcal{O}_{\mathrm{TVP}}^{2} = i\varepsilon_{\mu\nu\rho\sigma} \langle [\nabla^{\nu}T^{\mu}, V^{\rho\sigma}] u^{\alpha} \rangle.$

$$\mathcal{O}_{\text{TVP}}^{3} = i\varepsilon_{\mu\nu\rho\sigma} \langle [\nabla^{\nu}T_{\alpha}^{\mu}, V^{-1}]u^{\nu} \rangle,$$

$$\mathcal{O}_{\text{TVP}}^{3} = i\varepsilon_{\mu\nu\rho\sigma} \langle [\nabla^{\nu}T_{\alpha}^{\mu}, V^{\rho\alpha}]u^{\sigma} \rangle.$$

$$\nabla_{\mu}u^{\mu} = \frac{i}{2}\left(\chi_{-} - \frac{1}{n_{f}}\langle\chi_{-}\rangle\right)$$

 $\langle \nabla_{\mu} (ABC \cdots) \rangle = \langle (\nabla_{\mu}A) BC \cdots \rangle + \langle A (\nabla_{\mu}B) C \cdots \rangle + \langle AB (\nabla_{\mu}C) \cdots \rangle + \cdots$

 $g_{\alpha\lambda}\varepsilon_{\mu\nu\rho\sigma} + g_{\alpha\mu}\varepsilon_{\nu\rho\sigma\lambda} + g_{\alpha\nu}\varepsilon_{\rho\sigma\lambda\mu} + g_{\alpha\rho}\varepsilon_{\sigma\lambda\mu\nu} + g_{\alpha\sigma}\varepsilon_{\lambda\mu\nu\rho} = 0$

Power-counting

- 1/Nc expansion,
 - Loop diagrams are suppressed
 - Uncertainty ~1/3
- 'Chiral counting' by integrating out resonances
 - Those generating O(p⁶) ChPT Lagrangians

 $\langle R_a \chi(p^4) \rangle, \langle R_a R_b \chi(p^2) \rangle$ and $\langle R_a R_b R_c \rangle$.

Dai et.al., PRD99 (2019) 114015

Matching GF: reduce LECs

 Matching GF between QCD and ChEFT in the high energy region, using large Nc and OPE.

$$\begin{pmatrix} \Pi_{SAA}^{ijk} \end{pmatrix}_{\mu\nu} = i^2 \int d^4x \, d^4y \, e^{i(p_1 \cdot x + p_2 \cdot y)} \, \langle 0|T \left\{ S^i(0) A^j_\mu(x) A^k_\nu(y) \right\} |0\rangle$$

$$\begin{pmatrix} \Pi_{SVV}^{ijk} \end{pmatrix}_{\mu\nu} = i^2 \int d^4x \, d^4y \, e^{i(p_1 \cdot x + p_2 \cdot y)} \, \langle 0|T \left\{ S^i(0) V^j_\mu(x) V^k_\nu(y) \right\} |0\rangle$$

$$S^i(x) = \left(\bar{q} \lambda^i q \right) (x) \qquad V^i_\mu(x) = \left(\bar{q} \gamma_\mu \frac{\lambda^i}{2} q \right) (x) \qquad A^i_\mu(x) = \left(\bar{q} \gamma_\mu \gamma_5 \frac{\lambda^i}{2} q \right) (x)$$

$$p_{1}^{\mu} \left(\Pi_{SAA}^{ijk}\right)_{\mu\nu} = -2 d^{ijk} B_{0} F^{2} \frac{(p_{2})_{\nu}}{p_{2}^{2}} p_{1}^{\mu} \left(\Pi_{SVV}^{ijk}\right)_{\mu\nu} = 0$$
$$p_{2}^{\nu} \left(\Pi_{SAA}^{ijk}\right)_{\mu\nu} = -2 d^{ijk} B_{0} F^{2} \frac{(p_{1})_{\mu}}{p_{1}^{2}} p_{2}^{\nu} \left(\Pi_{SVV}^{ijk}\right)_{\mu\nu} = 0$$

Dai et.al., PRD99 (2019) 114015

(^q/µ/5 2^q)(x)

SAA

P and Q are the Lorentz structure of momentum, they vanish by timing p_{1μ} and p_{2ν}.

$$\begin{pmatrix} \Pi_{SAA}^{ijk} \end{pmatrix}_{\mu\nu} = d^{ijk}B_0 \left[-2F^2 \frac{(p_1)_{\mu}(p_2)_{\nu}}{p_1^2 p_2^2} + \mathcal{F}_A \left(p_1^2, p_2^2, q^2 \right) P_{\mu\nu} + \mathcal{G}_A \left(p_1^2, p_2^2, q^2 \right) Q_{\mu\nu} \right]$$

$$P_{\mu\nu} = (p_2)_{\mu} (p_1)_{\nu} - p_1 \cdot p_2 g_{\mu\nu},$$

$$Q_{\mu\nu} = p_1^2 (p_2)_{\mu} (p_2)_{\nu} + p_2^2 (p_1)_{\mu} (p_1)_{\nu} - p_1 \cdot p_2 (p_1)_{\mu} (p_2)_{\nu} - p_1^2 p_2^2 g_{\mu\nu}$$

$$\begin{split} &\lim_{\lambda \to \infty} \left(\Pi_{SAA}^{ijk} \right)_{\mu\nu} (\lambda p_1, \lambda p_2) = -2 \, d^{ijk} \, B_0 F^2 \frac{1}{\lambda^2} \frac{1}{p_1^2 p_2^2 q^2} \left[q^2 \left(p_1 \right)_{\mu} \left(p_2 \right)_{\nu} + Q_{\mu\nu} - p_1 \cdot p_2 \, P_{\mu\nu} \right] + \mathcal{O} \left(\frac{1}{\lambda^3} \right) \\ &\lim_{\lambda \to \infty} \left(\Pi_{SAA}^{ijk} \right)_{\mu\nu} \left(\lambda p_1, p_2 \right) = -2 \, d^{ijk} \, B_0 F^2 \frac{1}{\lambda} \frac{\left(p_1 \right)_{\mu} \left(p_2 \right)_{\nu}}{p_1^2 p_2^2} + \mathcal{O} \left(\frac{1}{\lambda^2} \right) \\ &\lim_{\lambda \to \infty} \left(\Pi_{SAA}^{ijk} \right)_{\mu\nu} \left(p_1, \lambda p_2 \right) = -2 \, d^{ijk} \, B_0 F^2 \frac{1}{\lambda} \frac{\left(p_1 \right)_{\mu} \left(p_2 \right)_{\nu}}{p_1^2 p_2^2} + \mathcal{O} \left(\frac{1}{\lambda^2} \right) \\ &\lim_{\lambda \to \infty} \left(\Pi_{SAA}^{ijk} \right)_{\mu\nu} \left(\lambda p_1, q - \lambda p_1 \right) = \mathcal{O} \left(\frac{1}{\lambda^2} \right) \end{split}$$

SAA matching

Constrains

$$\begin{split} \hat{L}_5 &= \hat{C}_{12} = \hat{C}_{80} = \hat{C}_{85} = 0, \\ \lambda_6^A &= \lambda_{16}^A = \lambda_{12}^S = \lambda_{16}^S = 0, \\ \lambda_6^{AA} &= -\frac{F^2}{16F_A^2}, \\ \lambda_1^{SA} &= \frac{\lambda}{4\sqrt[6]{2}F_A} \left(c_d - \frac{F^2}{8c_m} \right), \\ \lambda_2^{SA} &= -\frac{c_d}{2\sqrt{2}F_A}. \end{split}$$

15 couplings, 4 of them remain λ_{17}^A λ_{17}^S λ_{18}^S λ_{18}^{SAA} Also from $\Pi_{SS-PP}^{ij}(t)$ $F_S^{ij}(t)$, one can knows three more couplings, only 1 remain V. Cirigliano, et.al., NPB753 (2006) 179 $\lambda_{17}^S = \lambda_{18}^S = 0$, $\lambda_{17}^A = 0$, $\lambda_{17}^A = 0$,

Building amplitudes

RChT in the resonance region, excited states?

Building amplitudes

We give a combined analysis on several channels: $\pi^+\pi^-, K^+K^-, \pi^+\pi^-\pi^0, \pi^+\pi^-\eta \pi^0\gamma \text{ and } \eta\gamma$

 ρ-ω mixing, origined from Gasser&Leutwyler's

Not much freedom for Fit

It is 1, from QCD as well as disersion relation constraints

Gasser&Leutwyler, Phys.Rept.87 (1982) 77

Guerrero&Pich, PLB 412 (1997) 382

 $+\beta'_{\pi\pi}BW(M_{\rho'},\Gamma_{\rho'},Q^{2})+\beta''_{\pi\pi}BW(M_{\rho''},\Gamma_{\rho''},Q^{2})\Big)$

 $-\frac{F_V G_V}{\Gamma^2} Q^2 \left(BW(M_\omega, \Gamma_{\omega, \cdot}, Q^2) + \beta'_{\pi\pi} BW(M_{\omega'}, \Gamma_{\omega', \cdot}, Q^2) \right)$

 $\exp\left[\frac{-s}{96\pi^2 F^2} \left(\operatorname{Re}\left[A[m_{\pi}, M_{\rho}, Q^2] + \frac{1}{2}A[m_K, M_{\rho}, Q^2]\right]\right)\right]$

 $-\beta_{\pi\pi}^{'"}BW(M_{\omega^{''}},\Gamma_{\omega^{''}},Q^2)\right)\left(\frac{1}{\sqrt{3}}\sin\theta_V\cos\delta-\sin\delta^\omega\right)\sin\delta^\omega\right)$

 $F_V^{\pi} = \left(1 + \frac{F_V G_V}{F^2} Q^2 \left(BW(M_{\rho}, \Gamma_{\rho_{\gamma}}, Q^2)\right)\right)$

 $\left(\frac{1}{\sqrt{3}}\sin\theta_V\sin\delta^\rho + \cos\delta\right)\cos\delta$

ππ: Now closer to KLOE and BESIII's

Latest exp: CMD-3, large discrepancy

ππ

KK

- KK: data in the ϕ 'peak' have large discrepancy
- K_LK_S : further direct constraints on $\pi\pi$, KK channels

πγ

• $\pi\gamma$: helps to constrain $\pi\pi$, KK channels: ρ , ω , ϕ

• $\eta\gamma$: helps to constrain KK, and parameters of ρ , ω , ϕ

ηγ

πππ, ππη

πππ: needs more precise data in the ω φ region
 ππη: check our model

ΚΚπ

 KKπ: angular distributions are helpful to constrain amplitudes

Three body rescattering can improve it

R value

Cross sections needs to be corrected

$$R_{\rm h}(s) = \frac{3s}{4\pi\alpha_e^2(s)} \,\sigma\left(e^+e^- \to \text{ hadrons }\right)$$

$$\operatorname{Re}\Pi_{\operatorname{had}}(s) = -\frac{\alpha_e(0)s}{3\pi} \operatorname{P} \int_{s_{\operatorname{th}}}^{\infty} \frac{R(s')}{s'(s'-s)} ds'$$

R values are input from PDG

Davier *et.al.*, EPJC 80 (2020) 3, 241

g-2: HVP-LO

Other channels are taken from data-driven or QCD

J/ψ (BW integral)	6.28 ± 0.07
$\psi(2S)$ (BW integral)	1.57 ± 0.03
$R \text{data} \left[3.7 - 5.0 \right] \text{GeV}$	$7.29 \pm 0.05 \pm 0.30 \pm 0.00$
$R_{\rm QCD} [1.8 - 3.7 {\rm GeV}]_{uds}$	$33.45 \pm 0.28 \pm 0.65_{\rm dual}$
$R_{\rm QCD} [5.0 - 9.3 {\rm GeV}]_{udsc}$	6.86 ± 0.04
$R_{\rm QCD} [9.3 - 12.0 \text{ GeV}]_{udscb}$	1.21 ± 0.01
$R_{\rm QCD} [12.0 - 40.0 \text{ GeV}]_{udscb}$	1.64 ± 0.00
$R_{\rm QCD} [> 40.0 \text{ GeV}]_{udscb}$	0.16 ± 0.00
$R_{\rm QCD} [> 40.0 \text{ GeV}]_t$	0.00 ± 0.00

• HVP-LO: 694.10±3.14× 10⁻¹⁰ ^{708.} • Ours: a_{μ} =11659181.1 ±3.5 × 10⁻¹¹

 $708.7(5.3) \times 10^{-10}$ 11
Nature 593 (2021)
7857, 51-55

HVP

- Ours: a_{μ} =11659181.1 ±3.5 × 10⁻¹¹
- It differs 4.5σ from latest experiment's
 - 3.9σ If HLBL part repleaced with latest LQCD's

[hep-lat] 1.0 4.5 σ 0.8 0.6 Wang, Fang, Dai 0.4 This work Lattice 0.2 Nature(2021) T. Aoyama et al Exp Phys. Rept. 887, 1 PRL126, 141801 0.0 18.0 18.5 19.0 19.5 20.0 20.5 21.0 $a_{ii} \times 10^9 - 1165900$

T. Blum, et.al.,

arxiv:2304.04423

Experiment

Future experiments?

Guangshun Huang, talk at HNU

Four body final states?

Four body final states are important: $\pi\pi\pi\pi$, $\pi\pi KK$ channels, etc.

HVP: NLO, NNLO?

4、Summary

RChT

HVP

Amplitude analysis connects QFT principles and Exp. FSI needs to be considered when performing amplitude analysis.

RChT+FSI are powerful to work in the intermediate energy region, between ChPT and QCD.

Our g-2 has a significant discrepancy with the latest FNAL's. Processes of multi-body channels needs to be studied. $\pi\pi\pi\pi$, $\pi\pi$ KK?

Next?

Further study of light hadrons is neccessary to give a more reliable answer to muon g-2; Discrepancy between LQCD v.s. data driven; Improving ChEFT+FSI?

Thank You For your patience!