Combining leading one-loop electroweak corrections with NLO QCD+parton shower precision

Timea Vitos In collaboration with: Davide Pagani, Marco Zaro based on [arXiv:2309.00452]

Uppsala University and ELTE Budapest

SM@LHC, Rome 9 May, 2024

ELTE EÖTVÖS LORÁND TUDOMÁNYEGYETEM

NLOPS+EWSL

Technical details of the $\rm NLO_{QCD} \otimes \rm EWSL + PS$ implementation in MG5 00000

Predictions for tTH 000

Today's talk

1. Technical details of the $\mathsf{NLO}_{QCD} \otimes \mathsf{EWSL} + \mathsf{PS}$ implementation in MG5

2. Predictions for $t\overline{t}H$

NLOPS+EWSE

Technical details of the $\rm NLO_{OCD} \otimes \rm EWSL+PS$ implementation in MG5 00000

Today's talk

1 Technical details of the $NLO_{OCD} \otimes EWSL + PS$ implementation in MG5

2. Predictions for $t\overline{t}H$

NLOPS+EWST

The one-loop approximation of NLO EW corrections

- Focus on electroweak corrections: automations of NLO EW corrections
- Current problems:
 - 1 time-consuming computations
 - 2. no automated matching to PS
- Alternative: capture the dominant part of it (in high-energy limit)!
 → electroweak Sudakov logarithms (EWSL)
- One-loop leading approximation in high-energy limit: worked out originally by Denner and Pozzorini¹
- o Arise as corrections to the Born-level matrix-element as

The Denner-Pozzorini algorithm and MG5 aMC@NLO

- One-loop Denner-Pozzorini implemented in Sherpa²
- One-loop Denner-Pozzorini implemented in OpenLoops³
- One-loop Denner-Pozzorini algorithm revised and implemented in MG5⁴

• Current project⁵

combination of this implementation with

NLO_{QCD}+PS

event generation via reweighting

²E. Bothmann, D. Napoletano arXiv:2006.14635
 ³J. M. Lindert, L. Mai arXiv:2312.07927
 ⁴D. Pagani, M. Zaro arXiv:2110.03714
 ⁵D. Pagani, TV, M. Zaro arXiv:2309.00452
 ⁷ Timea Vitos

ELIE EÖTVÖS LORÁND TUDOMÁNYEGYETEM

NLOPS+EWSE

Reweighting NLO events with EWSL

Summary of the implementation

1. Reweight all events in the described procedure and apply parton shower:

 $\mathsf{NLO}_{QCD} \otimes \mathsf{EWSL} + \mathsf{PS}$

Comparison to fixed-order: expected precision of $\mathcal{O}(\alpha_5 \alpha)$ corrections

2. Assign EWSL only to Born events and apply parton shower:

 $NLO_{QCD+EWSL}+PS$

Comparison to fixed-order: expected precision of

 $\mathcal{O}(\alpha_S) + \mathcal{O}(\alpha)$

ELTE EÖTVÖS LORÁND TUDOMÁNYEGYETEM

NLOPS+EWSL

7 / 10

Timea Vitos

Technical details of the $\rm NLO_{QCD} \otimes \rm EWSL + PS$ implementation in MG5 00000

Today's talk

Predictions for tTH

1. Technical details of the $\mathsf{NLO}_{QCD} \otimes \mathsf{EWSL} + \mathsf{PS}$ implementation in MG5

2. Predictions for $t\overline{t}H$

NLOPS+EWSL

Results for $t\bar{t}H$: $p_T(H)$ inclusive

• Up to 5% difference between the two approaches

Summary

Summary

- ✓ Combined EWSL implementation and reweight module in MG5_aMC@NLO for obtaining NLO_{QCD} ⊗ EWSL+PS precision
- ✓ Preliminary comparison to full NLO EW fixed-order corrections shows expected behaviours for $t\bar{t}H$

Thank you for your attention!

Adding parton showers

$$\mathsf{CD}:\qquad\qquad \mathcal{O}(\alpha_S)\xrightarrow{\mathsf{QCD}\,\mathsf{PS}}\mathcal{O}(\alpha_S^n)\qquad\qquad n>1$$

 \rightarrow matching needed!

NLO QCD+EWSL: $\mathcal{O}(\alpha_{S}\alpha) \xrightarrow{\text{QCD PS}} \mathcal{O}(\alpha_{S}^{n}\alpha) \qquad n > 1$

NLO Q

 \rightarrow no additional matching needed!

NLO QCD+EWSL:
$$\mathcal{O}(\alpha_{S}\alpha) \xrightarrow{\text{QCD PS}+\text{QED PS}} \mathcal{O}(\alpha_{S}^{n}\alpha_{(\text{QED})}^{m}) \quad n > 1, m > 1$$

 \rightarrow matching needed!

Timea Vitos

ELTE EÖTVÖS LORÁND TUDOMÁNYEGYETEM

NLOPS+EWSL

Reweighting NLO events with EWSL

Problem 1

 Sudakov logarithm expressions not valid in the soft/collinear regions!

Problem 2

• IR cancellation might not be secured anymore!

Proposed procedure:⁶

- 1. Check all $r_{kl} = (p_k \pm p_l)^2$
- 2. If all $|r_{kl}| > c_{\mathbb{H} o \mathbb{S}} M_W^2$: use (n+1)-body Sudakov
- 3. If any $|r_{kl}| < c_{\mathbb{H}
 ightarrow \mathbb{S}} M_W^2$ merge particles k, l
- 4. If reasonable merged process: use n-body Sudakov of the mapped kinematics, else use the (n+1)-body Sudakov and replace $|r_{kl}| \rightarrow M_W^2$
- 5. Vary $c_{\mathbb{H}
 ightarrow \mathbb{S}}$ to assess "Sudakov-cut" dependence

⁶D. Pagani, T. Vitos, M. Zaro arXiv:2309.00452 Timea Vitos

NLOPS+EWSL

3/18

 \neg

Timea Vitos

NLOPS+EWSL

Summary of the implementation

1. Reweight all events in the described procedure and shower them:

 $NLO_{QCD} \otimes EWSL + PS$

2. Assign EWSL only to Born events and shower the events:

 $NLO_{QCD+EWSL}+PS$

• Difference between two is roughly:

 $(NLO_{QCD} \otimes EWSL + PS) - (NLO_{QCD+EWSL} + PS) \sim EWSL \times (K_{QCD} - 1)$ (2)

o Include QED final-state radiation to capture further large EW effects

use SDK_{weak} mode of the EWSL implementation

Timea Vitos

NLOPS+EWSL

5/18

 \neg

Results for $t\bar{t}H$: $p_T(t)$

- Similar positive corrections in low- p_T range
- Stable agreement to FO NLO EW
- Again, small difference between multiplicative and additive approaches

Results for $t\bar{t}H$: $m(t\bar{t})$

- Difference between additive and multiplicative in high-energy range
- Scale band differences: EWSL on top of NLO events (blue) and LO events (red)

Results for $t\bar{t}H$: $p_T(H)$ inclusive

Example results: ZZZ

Timea Vitos

NLOPS+EWSL

Results for ZZZ: $p_T(Z_1)$

- $\circ\,$ Smaller scale uncertainty bands: no LO $\sim \alpha_S$
- Larger EWSL effects + larger QCD K-factor

Results for ZZZ: $m(Z_1, Z_2)$

Example results: ZZZ with decays

Example results: ZZZ with decays

- First perform EWSL reweighting on ZZZ sample, then decay with MadSpin
- Lepton classification with jet algorithm (accepted event if 6 charged jets found):

$$p_{\mathcal{T}}(\text{lepton}) > 25 \text{ GeV} \tag{3}$$

• To catch correct BW shapes: label positrons e_i^+ such that they minimize

$$\sum_{i} |m(e_{i}^{-}e_{i}^{+}) - M_{Z}|^{2}$$
(4)

 Final-state QED radiation: investigate its effect by turning it off/on, including only photon radiation:

Results for ZZZ with decays: $m(e_i^-e_i^+)$

- $\circ~$ EWSL: red and blue $\sim-5\%$
- o Assess QED radiation effects: around peak region only!

Results for ZZZ: $p_T(j_1)$

Results for ZZZ: $m(Z_1, Z_2, Z_3)$

Results for ZZZ with decays: $p_T(e_1)$

Results for ZZZ with decays: $p_T(e_2)$

Results for ZZZ with decays: $p_T(e_3)$

