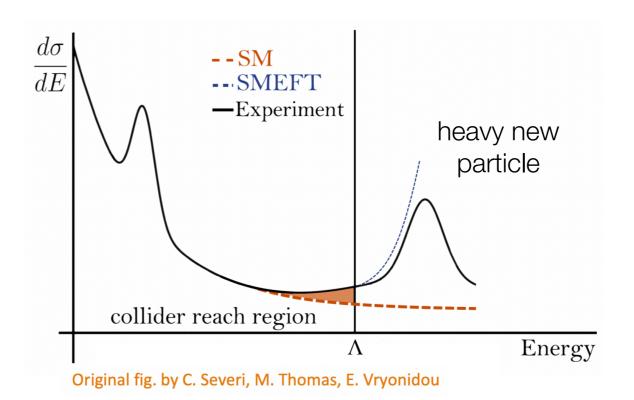
Triboson production in the SMEFT

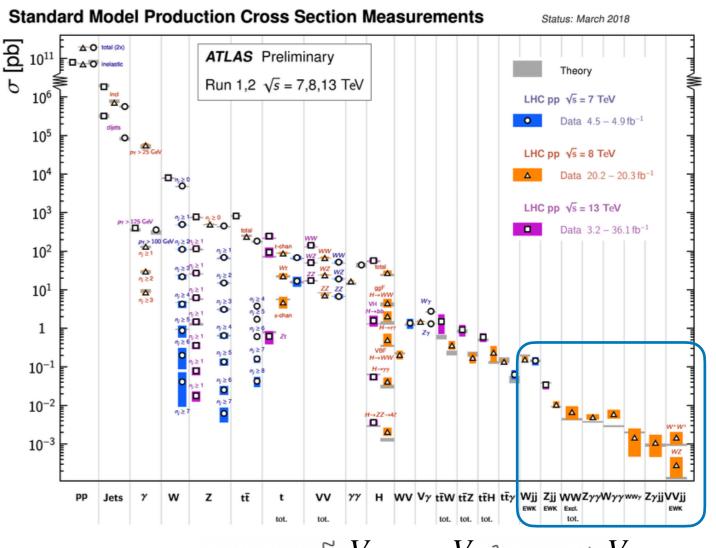
EC, Gauthier Durieux, Ken Mimasu, Eleni Vryonidou [240X.XXXXX]

SM@LHC 8/5/24, Roma, Italy



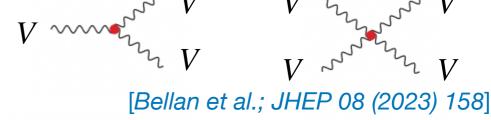
Eugenia Celada University of Manchester

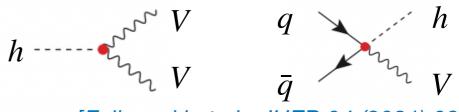
The SMEFT


Dimension-6 operators Warsaw basis

$$\mathcal{L}_{ ext{SMEFT}} = \mathcal{L}_{ ext{SM}} + \sum_i rac{c_i^{(6)}}{\Lambda^2} O_i^{(6)} + \mathcal{O}(\Lambda^{-3})$$

$$\sigma \sim |\mathcal{M}_{\mathrm{SM}}|^2 + \frac{1}{\Lambda^2} \left(\sum c^{(6)} \, 2 \mathrm{Re} \left[\mathcal{M}_{\mathrm{SM}}^* \mathcal{M}_{\mathrm{EFT}}^{(6)} \right] \right) + \frac{1}{\Lambda^4} \left(\sum c^{(6)} \mathcal{M}_{\mathrm{EFT}}^{(6)} \right)^2$$

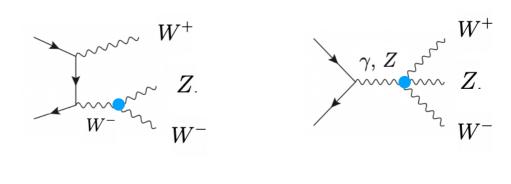

Triboson production at the LHC

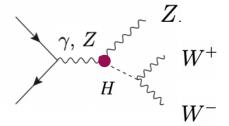

 Triboson have small cross sections, only accessible with LHC run 2 (total rates, mainly fully leptonic)

Why triboson?

- Tree-level access to TGC and QGC
- Interplay with the Higgs sector

[Falkowski et al.; JHEP 04 (2021) 023]


Operator	Definition		
bosonic			
$\mathcal{O}_{\phi D}$	$(\phi^\dagger D^\mu \phi)^\dagger (\phi^\dagger D_\mu \phi)$		
$\mathcal{O}_{\phi WB}$	$(\phi^\dagger au_I \phi) B^{\mu u} W^I_{\mu u}$		
\mathcal{O}_{WWW}	$\epsilon_{IJK}W^I_{\mu\nu}W^{J,\nu\rho}W^{K,\mu}_{\rho}$		
two-fermion			
$\mathcal{O}_{\phi q}^{(1)}$	$i(\phi^\dagger \overleftrightarrow{D}_\mu \phi)(\bar{q} \gamma^\mu q)$		
$\mathcal{O}_{\phi q}^{(3)}$	$i(\phi^{\dagger} \overleftrightarrow{D}_{\mu} \tau_I \phi)(\bar{q} \gamma^{\mu} \tau^I q)$		
$\mathcal{O}_{\phi u}$	$i(\phi^\dagger \overleftrightarrow{D}_\mu \phi)(\bar{u} \gamma^\mu u)$		
$\mathcal{O}_{\phi d}$	$i(\phi^{\dagger} \overleftrightarrow{D}_{\mu} \phi)(\bar{d} \gamma^{\mu} d)$		
$\mathcal{O}_{\phi\ell}^{(1)}$	$i(\phi^\dagger \overleftrightarrow{D}_\mu \phi)(ar{\ell} \gamma^\mu \ell)$		
$\mathcal{O}_{\phi\ell}^{(3)}$	$i(\phi^{\dagger} \overleftrightarrow{D}_{\mu} \tau_I \phi)(\bar{\ell} \gamma^{\mu} \tau^I \ell)$		
$\mathcal{O}_{\phi e}$	$i(\phi^\dagger \overleftrightarrow{D}_\mu \phi)(\bar{e} \gamma^\mu e)$		
four-fermion			
$\mathcal{O}_{\ell\ell}$	$(ar{\ell}\gamma_{\mu}\ell)(ar{\ell}\gamma^{\mu}\ell)$		


Subset of 11 EW&Higgs operators

• flavour universality, $U(3)^5$

Operator	Definition		
bosonic			
$\mathcal{O}_{\phi D}$	$(\phi^\dagger D^\mu \phi)^\dagger (\phi^\dagger D_\mu \phi)$		
$\mathcal{O}_{\phi WB}$	$(\phi^\dagger au_I \phi) B^{\mu u} W^I_{\mu u}$		
\mathcal{O}_{WWW}	$\epsilon_{IJK}W^I_{\mu\nu}W^{J,\nu\rho}W^{K,\mu}_{\rho}$		
	two-fermion		
$\mathcal{O}_{\phi q}^{(1)}$	$i(\phi^\dagger \overleftrightarrow{D}_\mu \phi)(\bar{q} \gamma^\mu q)$		
$\mathcal{O}_{\phi q}^{(3)}$	$i(\phi^{\dagger} \overleftrightarrow{D}_{\mu} \tau_I \phi)(\bar{q} \gamma^{\mu} \tau^I q)$		
$\mathcal{O}_{\phi u}$	$i(\phi^\dagger \overleftrightarrow{D}_\mu \phi)(\bar{u}\gamma^\mu u)$		
$\mathcal{O}_{\phi d}$	$i(\phi^\dagger \overleftrightarrow{D}_\mu \phi)(\bar{d}\gamma^\mu d)$		
$\mathcal{O}_{\phi\ell}^{(1)}$	$i(\phi^\dagger \overleftrightarrow{D}_\mu \phi)(\bar{\ell} \gamma^\mu \ell)$		
$\mathcal{O}_{\phi\ell}^{(3)}$	$i(\phi^\dagger \overleftrightarrow{D}_\mu au_I \phi) (ar{\ell} \gamma^\mu au^I \ell)$		
$\mathcal{O}_{\phi e}$	$i(\phi^\dagger \overleftrightarrow{D}_\mu \phi)(\bar{e} \gamma^\mu e)$		
f	four-fermion		
$\mathcal{O}_{\ell\ell}$	$(ar{\ell}\gamma_{\mu}\ell)(ar{\ell}\gamma^{\mu}\ell)$		

$$pp \to W^+W^-Z$$

Operator	Definition			
bosonic				
$\mathcal{O}_{\phi D}$	$(\phi^\dagger D^\mu \phi)^\dagger (\phi^\dagger D_\mu \phi)$			
$\mathcal{O}_{\phi WB}$	$(\phi^\dagger au_I \phi) B^{\mu u} W^I_{\mu u}$			
\mathcal{O}_{WWW}	$\epsilon_{IJK}W^I_{\mu\nu}W^{J,\nu\rho}W^{K,\mu}_{\rho}$			
	two-fermion			
$\mathcal{O}_{\phi q}^{(1)}$	$i(\phi^\dagger \overleftrightarrow{D}_\mu \phi)(\bar{q} \gamma^\mu q)$			
$\mathcal{O}_{\phi q}^{(3)}$	$i(\phi^\dagger \overleftrightarrow{D}_\mu au_I \phi)(\bar{q} \gamma^\mu au^I q)$			
$\mathcal{O}_{\phi u}$	$i(\phi^{\dagger} \overleftrightarrow{D}_{\mu} \phi)(\bar{u} \gamma^{\mu} u)$			
$\mathcal{O}_{\phi d}$	$i(\phi^\dagger \overleftrightarrow{D}_\mu \phi)(\bar{d}\gamma^\mu d)$			
$\mathcal{O}_{\phi\ell}^{(1)}$	$i(\phi^\dagger \overleftrightarrow{D}_\mu \phi)(\bar{\ell} \gamma^\mu \ell)$			
$\mathcal{O}_{\phi\ell}^{(3)}$	$i(\phi^\dagger \overleftrightarrow{D}_\mu au_I \phi)(ar{\ell} \gamma^\mu au^I \ell)$			
$\mathcal{O}_{\phi e}$	$i(\phi^\dagger \overleftrightarrow{D}_\mu \phi)(\bar{e} \gamma^\mu e)$			
Í	four-fermion			
$\mathcal{O}_{\ell\ell}$	$(ar{\ell}\gamma_{\mu}\ell)(ar{\ell}\gamma^{\mu}\ell)$			

$$pp \rightarrow W^{+}W^{-}Z$$

$$W^{+}$$

$$Z$$

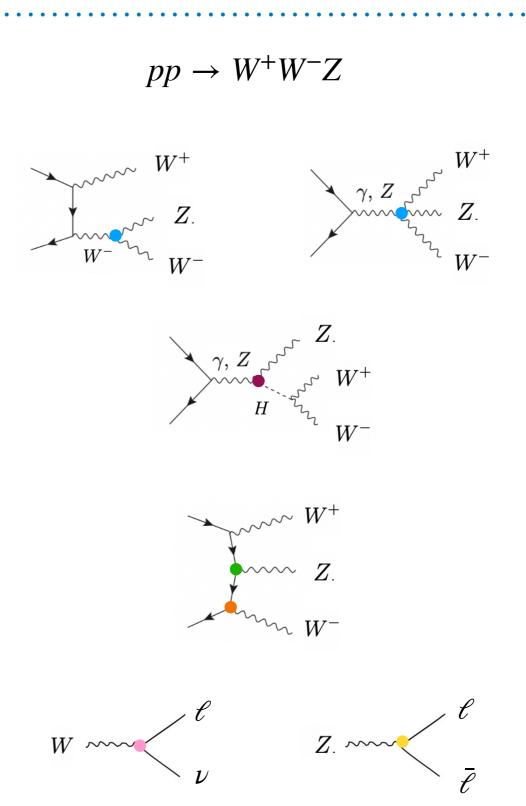
$$W^{-}$$

$$W^{-}$$

$$W^{-}$$

$$W^{+}$$

$$W^{-}$$

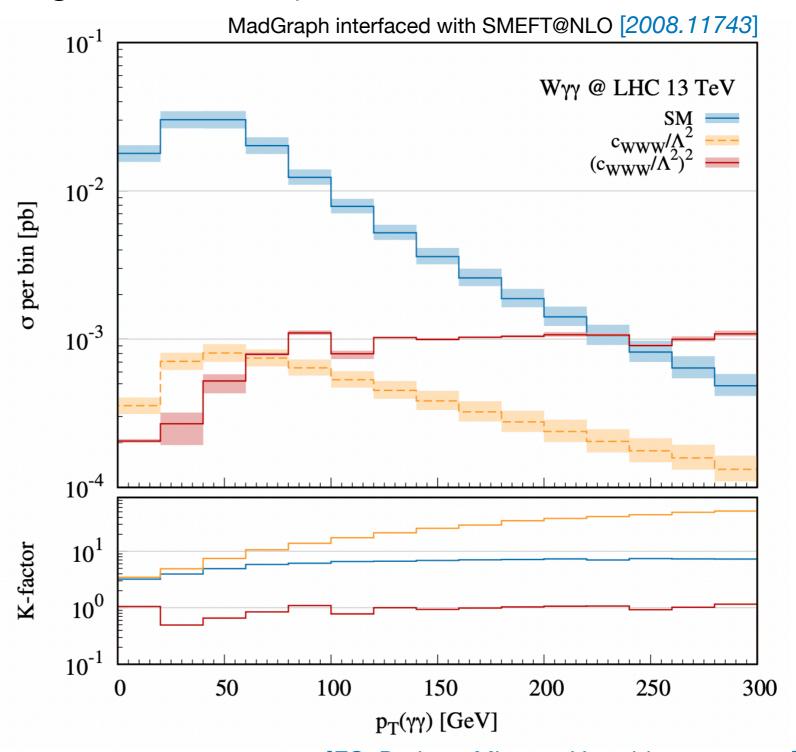

$$W^{-}$$

$$W^{+}$$

$$W^{-}$$

Operator	Definition			
bosonic				
$\mathcal{O}_{\phi D}$	$(\phi^\dagger D^\mu \phi)^\dagger (\phi^\dagger D_\mu \phi)$			
$\mathcal{O}_{\phi WB}$	$(\phi^\dagger au_I \phi) B^{\mu u} W^I_{\mu u}$			
\mathcal{O}_{WWW}	$\epsilon_{IJK}W^I_{\mu\nu}W^{J, u ho}W^{K,\mu}_{ ho}$			
	two-fermion			
$\mathcal{O}_{\phi q}^{(1)}$	$i(\phi^\dagger \overleftrightarrow{D}_\mu \phi)(\bar{q} \gamma^\mu q)$			
$\mathcal{O}_{\phi q}^{(3)}$	$i(\phi^\dagger \overleftrightarrow{D}_\mu au_I \phi)(ar{q} \gamma^\mu au^I q)$			
$\mathcal{O}_{\phi u}$	$i(\phi^{\dagger} \overleftrightarrow{D}_{\mu} \phi)(\bar{u} \gamma^{\mu} u)$			
$\mathcal{O}_{\phi d}$	$i(\phi^\dagger \overleftrightarrow{D}_\mu \phi)(\bar{d}\gamma^\mu d)$			
$\mathcal{O}_{\phi\ell}^{(1)}$	$i(\phi^\dagger \overleftrightarrow{D}_\mu \phi)(\bar{\ell} \gamma^\mu \ell)$			
${\cal O}_{\phi\ell}^{(3)}$	$i(\phi^\dagger \overleftrightarrow{D}_\mu au_I \phi)(ar{\ell} \gamma^\mu au^I \ell)$			
$\mathcal{O}_{\phi e}$	$i(\phi^\dagger \overleftrightarrow{D}_\mu \phi)(\bar{e} \gamma^\mu e)$			
four-fermion				
$\mathcal{O}_{\ell\ell}$	$(ar{\ell}\gamma_{\mu}\ell)(ar{\ell}\gamma^{\mu}\ell)$			

Operator	Definition	
	bosonic	
$\mathcal{O}_{\phi D}$	$(\phi^\dagger D^\mu \phi)^\dagger (\phi^\dagger D_\mu \phi)$	
$\mathcal{O}_{\phi WB}$	$(\phi^\dagger au_I \phi) B^{\mu u} W^I_{\mu u}$	
\mathcal{O}_{WWW}	$\epsilon_{IJK}W^I_{\mu\nu}W^{J, u ho}W^{K,\mu}_{ ho}$	
	two-fermion	
$\mathcal{O}_{\phi q}^{(1)}$	$i(\phi^{\dagger} \overleftrightarrow{D}_{\mu} \phi)(\bar{q} \gamma^{\mu} q)$	
$\mathcal{O}_{\phi q}^{(3)}$	$i(\phi^{\dagger} \overleftrightarrow{D}_{\mu} \tau_I \phi)(\bar{q} \gamma^{\mu} \tau^I q)$	
$\mathcal{O}_{\phi u}$	$i(\phi^{\dagger} \overleftrightarrow{D}_{\mu} \phi)(\bar{u} \gamma^{\mu} u)$	
$\mathcal{O}_{\phi d}$	$i(\phi^\dagger \overleftrightarrow{D}_\mu \phi)(\bar{d}\gamma^\mu d)$	
$\mathcal{O}_{\phi\ell}^{(1)}$	$i(\phi^\dagger \overleftrightarrow{D}_\mu \phi)(\bar{\ell} \gamma^\mu \ell)$	
$\mathcal{O}_{\phi\ell}^{(3)}$	$i(\phi^\dagger \overleftrightarrow{D}_\mu au_I \phi)(\bar{\ell} \gamma^\mu au^I \ell)$	G_{F}
$\mathcal{O}_{\phi e}$	$i(\phi^{\dagger} \overleftrightarrow{D}_{\mu} \phi)(\bar{e} \gamma^{\mu} e)$	
1	four-fermion	
$\mathcal{O}_{\ell\ell}$	$(ar{\ell}\gamma_{\mu}\ell)(ar{\ell}\gamma^{\mu}\ell)$	G_{F}



Going NLO

NLO QCD corrections are large in triboson processes [Degrande et al.; 2008.11743]

$W\gamma\gamma$				
$\sigma({ m fb})$	K-factor			
$\sigma_{ m SM}$	4.84			
$\sigma_{\phi D}$	4.86			
$\sigma_{\phi D,\phi D}$	4.86			
$\sigma_{\phi WB}$	4.70			
$\sigma_{\phi WB,\phi WB}$	1.47			
σ_{WWW}	12.24			
$\sigma_{WWW,WWW}$	0.79			
$\sigma_{\phi\ell^{(3)}}$	4.85			
$\sigma_{\phi\ell^{(3)},\phi\ell^{(3)}}$	4.85			
$\sigma_{\phi q^{(3)}}$	4.80			
$\sigma_{\phi q^{(3)},\phi q^{(3)}}$	4.80			
$\sigma_{\ell\ell}$	4.82			
$\sigma_{\ell\ell,\ell\ell}$	4.82			

$$K = \frac{\sigma_{\rm NLO}}{\sigma_{\rm LO}}$$

Operators and observables

EWPOs and
$$\alpha_{\rm EW} \sqrt{s} = m_{\rm Z}$$

$$\Gamma_Z, \sigma_{\mathrm{had}}^0, R_\ell^0, A_{FB}^\ell, A_\ell(\mathrm{SLD}), R_b^0, R_c^0, A_{FB}^b, A_{FB}^c, A_b, A_c$$
 [LEP; 0509008] $\alpha_{EW}(m_Z)$

LEP
$$WW \sqrt{s} = 183 - 209 \text{ GeV}$$

LEP
$$WW\sqrt{s} = 183 - 209$$
 GeV $\sigma(WW \to \ell\nu\ell\nu, qqqq)$ $\frac{d\sigma}{d\cos(\theta)}(WW \to \ell\nu qq)$

[LEP: 1302.3415]

LHC VV
$$\sqrt{s} = 13 \text{ TeV}$$

$$\frac{d\sigma}{dm_{e\mu}}(WW \to e\nu\mu\nu)$$

[ATLAS; 1905.04242]

$$\frac{d\sigma}{dp_T^Z}(WZ\to\ell\nu\ell\nu)$$

[ATLAS; 1902.05759]

$$\frac{d\sigma}{d\Delta\phi_{ii}}(Zjj\to\ell\ell jj)$$

[ATLAS: 2006.15458]

LHC VVV
$$\sqrt{s} = 13 \text{ TeV}$$

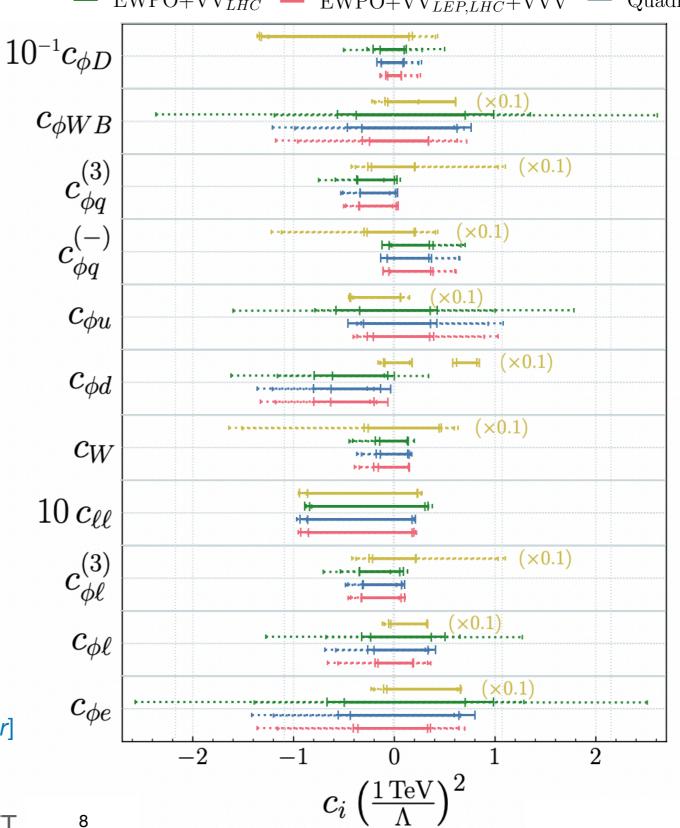
 $\sigma(WWW, WWZ, WZZ, WZ\gamma, WW\gamma, W\gamma\gamma)$

[ATLAS; 2201.13045, 2305.16994, 2308.03041] [CMS: 2006.11191, 2310.05164, 2105.12780]

Operators and observables

Operator	Definition	EWPOs	LEP WW	LHC VV	$VVV, VV\gamma, V\gamma\gamma$
	bosonic				
$\mathcal{O}_{\phi D}$	$(\phi^\dagger D^\mu \phi)^\dagger (\phi^\dagger D_\mu \phi)$	✓	✓	✓	✓
$\mathcal{O}_{\phi WB}$	$(\phi^\dagger au_I \phi) B^{\mu u} W^I_{\mu u}$	✓	✓	✓	✓
\mathcal{O}_{WWW}	$\epsilon_{IJK}W^I_{\mu\nu}W^{J,\nu\rho}W^{K,\mu}_\rho$		✓	✓	✓
	two-fermion				
$\mathcal{O}_{\phi q}^{(1)}$	$i(\phi^\dagger \overleftrightarrow{D}_\mu \phi)(\bar{q} \gamma^\mu q)$	✓		✓	✓
$\mathcal{O}_{\phi q}^{(3)}$	$i(\phi^\dagger \overleftrightarrow{D}_\mu au_I \phi)(ar{q} \gamma^\mu au^I q)$	✓	✓	✓	✓
$\mathcal{O}_{\phi u}$	$i(\phi^\dagger \overleftrightarrow{D}_\mu \phi)(\bar{u}\gamma^\mu u)$	✓		✓	✓
$\mathcal{O}_{\phi d}$	$i(\phi^\dagger \overleftrightarrow{D}_\mu \phi)(\bar{d}\gamma^\mu d)$	✓		✓	✓
$\mathcal{O}_{\phi\ell}^{(1)}$	$i(\phi^\dagger \overleftrightarrow{D}_\mu \phi)(ar{\ell} \gamma^\mu \ell)$	✓	✓	✓	\checkmark
$\mathcal{O}_{\phi\ell}^{(3)}$	$i(\phi^\dagger \overleftrightarrow{D}_\mu au_I \phi)(ar{\ell} \gamma^\mu au^I \ell)$	✓	\checkmark	✓	\checkmark
$\mathcal{O}_{\phi e}$	$i(\phi^\dagger \overleftrightarrow{D}_\mu \phi)(\bar{e} \gamma^\mu e)$	✓	✓	✓	✓
1	four-fermion				
$\mathcal{O}_{\ell\ell}$	$(ar{\ell}\gamma_{\mu}\ell)(ar{\ell}\gamma^{\mu}\ell)$	✓	✓	✓	✓

Fit results


Fitmaker [Ellis et al.; 2012.02779]

Marginalised 95% C.I.

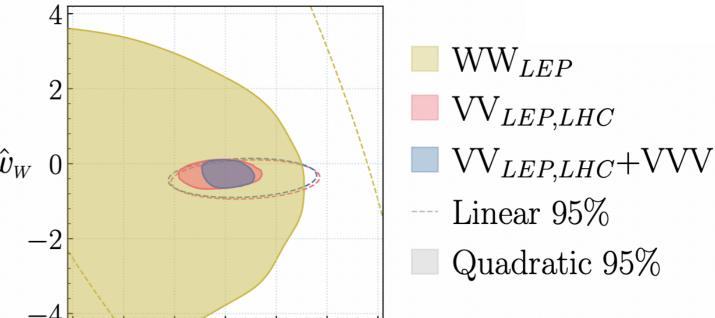
- EWPO+VV $_{LEP}$ EWPO+VV $_{LEP,LHC}$... Linear
- EWPO+VV_{LHC} EWPO+VV_{LEP,LHC}+VVV Quadratic

- LHC VV & VVV appear to improve significantly the bounds from EWPOs & LEP VV
- Quadratic fit: 50% improvement from VVV wrt VV on $c_{\phi D}$, $c_{\phi WB}$, $c_{\phi \ell}$, $c_{\phi e}$
- Bounds dominated by quadratic

[EC, Durieux, Mimasu, Vryonidou; to appear]

Interpretation

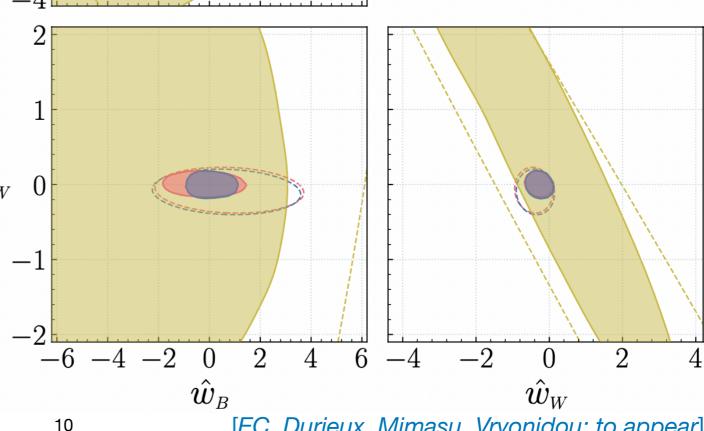
• Three EWPOs unconstrained directions: $w_B, w_W + c_W$


$$\begin{split} g_1^2 \, w_B &= g_1^2 \frac{\bar{v}_T^2}{\Lambda^2} \left(-\frac{1}{3} C_{Hd} - C_{He} - \frac{1}{2} C_{Hl}^{(1)} + \frac{1}{6} C_{Hq}^{(1)} + \frac{2}{3} C_{Hu} + 2 C_{HD} - \frac{1}{2 t_{\hat{\theta}}} C_{HWB} \right), \\ g_2^2 \, w_W &= g_2^2 \frac{\bar{v}_T^2}{\Lambda^2} \left(\frac{C_{Hq}^{(3)} + C_{Hl}^{(3)}}{2} - \frac{t_{\bar{\theta}}}{2} C_{HWB} \right). \end{split}$$
 [Brivio and Trott; 1701.06424]

- 3/11 directions unconstrained in a EWPOs only fit
- additional data is needed (multiboson)
- 2 possible origins of the improvement
- 1. constraints in EWPOs blind space + marginalisation
- 2. genuine effect of higher sensitivity in all directions

Where do VV & VVV help?

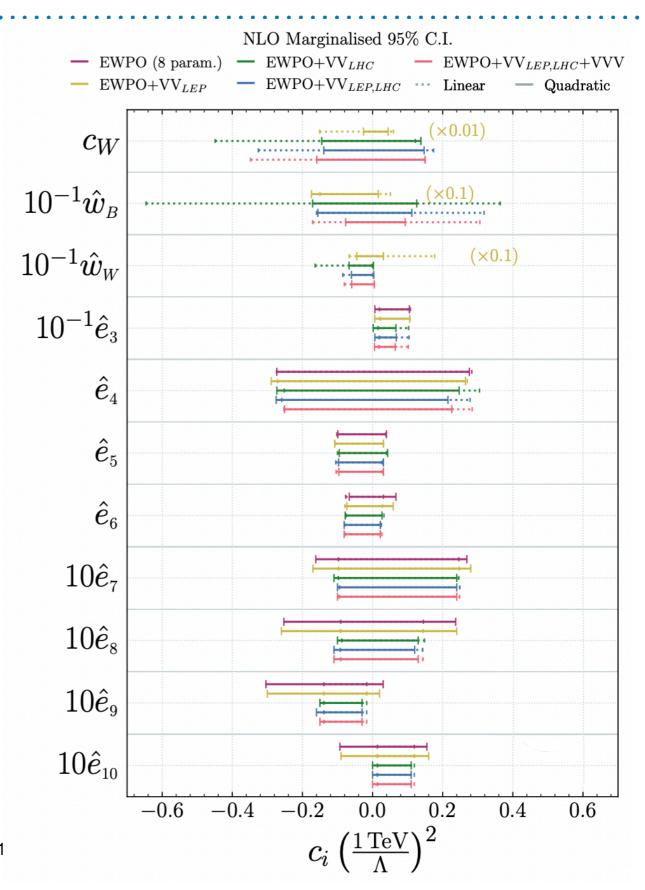
Three EWPOs unconstrained parameters: \hat{w}_{R} , \hat{w}_{W} , c_{W}


• Large $\mathcal{O}(\Lambda^{-4})$ effect (also for $\hat{w}_{\scriptscriptstyle W}$ $_0$ LEP VV!)

LHC VV dominates over LEP

• $\vee\vee\vee$ at $\mathcal{O}(\Lambda^{-2})$ doesn't help

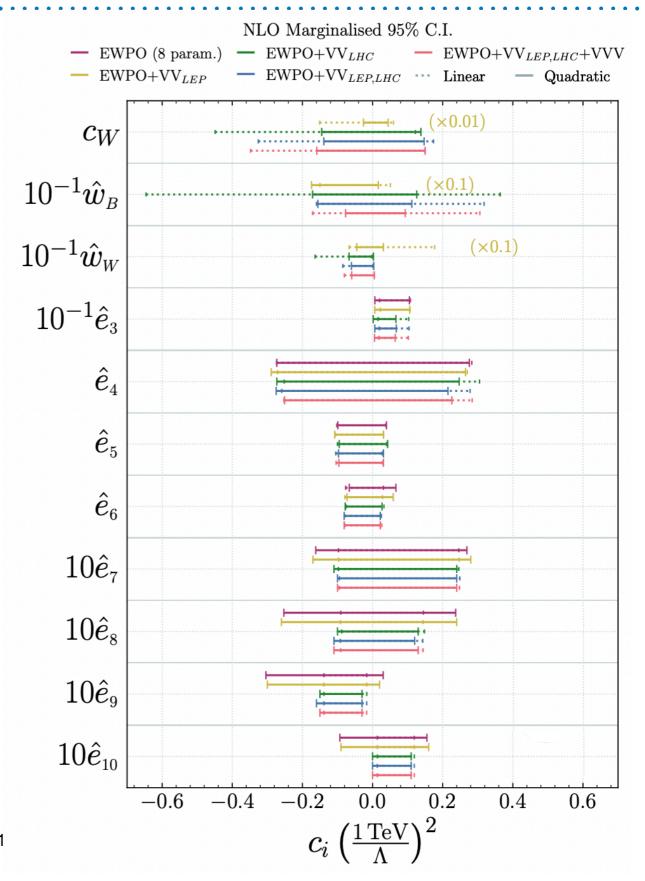
• VVV constrains \hat{w}_R at $\mathcal{O}(\Lambda^{-4}) c_W$ 0



What about the other directions?

Does multiboson help EWPOs in the directions orthogonal to $\{\hat{w}_B, \hat{w}_W, O_{WWW}\}$?

 in general, EWPOs constraints are dominant

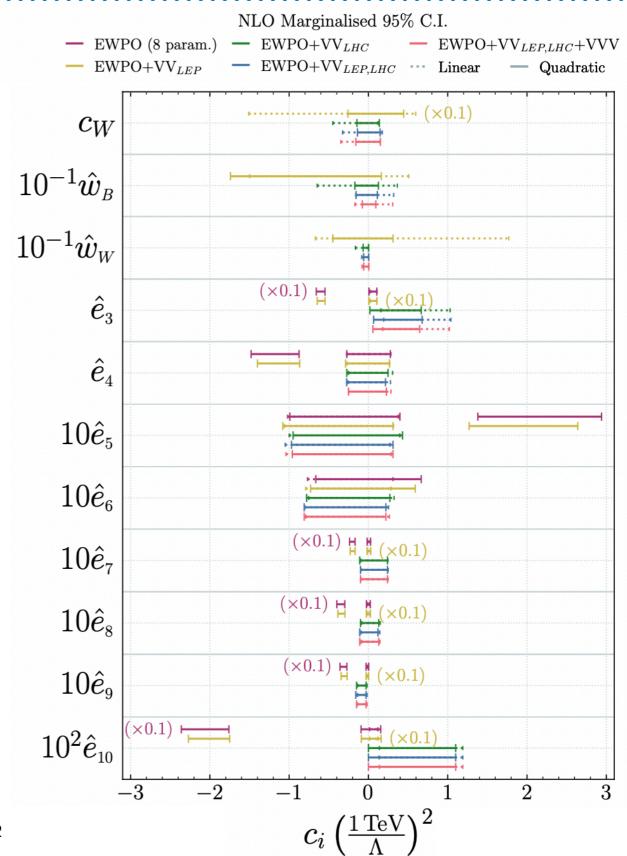


What about the other directions?

Does multiboson help EWPOs in the directions orthogonal to $\{\hat{w}_B, \hat{w}_W, O_{WWW}\}$?

- in general, EWPOs constraints are dominant
- mild improvement from quadratics (even EWPOs) on some directions

[EC, Durieux, Mimasu, Vryonidou; to appear]



What about the other directions?

Does multiboson help EWPOs in the directions orthogonal to $\{\hat{w}_B, \hat{w}_W, O_{WWW}\}$?

- in general, EWPOs constraints are dominant
- mild improvement from quadratics (even EWPOs) on some directions
- secondary minima in EWPOs+LEP VV lifted by LHC VV

[EC, Durieux, Mimasu, Vryonidou; to appear]

Summary & conclusions

- QCD corrections have significant impact in LHC VV&VVV
- Multiboson production is complementary to EWPOs: triboson improves the bounds in EWPOs flat space
- Quadratic EFT contributions are sizeable for all the processes, from EWPO leading to secondary minima, to LEP diboson, and the LHC VV&VVV