

STANDARD MODEL AT THE LHC, Rome, May 7-10, 2024

Search for the Higgs boson decay in charm quarks at the CMS experiment

Angela Zaza on behalf of the CMS collaboration

University of Bari & INFN



### Higgs boson physics at LHC



CMS Intervention of the sector of the secto



- $\triangleright$  Couplings to weak bosons and third generation fermions measured with 10-20% precision  $\rightarrow$  compatible with the SM
- Couplings to charm quarks out of reach extremely challenging: small rate and overwhelming QCD background





### Charmed jets

#### Heavy flavour jets (b/c):

- ▷ Displaced tracks from secondary vertex (SV)
- $\triangleright$  Heavy hadron decay products with large  $p_T$
- ▷ Soft electrons/muons





**c-tagging** more complex than b-tagging:

discriminating variable distributions intermediate between b and light-jet ones

**Fat Jets**: Jets produced by the decay of a highly energetic Higgs boson ( $p_T > 200$  GeV) are collimated and can be reconstructed as a merged large radius jet (AK8 or AK15).

JHEP04(2008)063

Heavy flavour tagging performed by combining many discriminating variables by means of MVA techniques

### VH production mode (1/4)

- ▷ Most sensitive channel to the H→cc decay: QCD background suppressed by targeting the leptonic decays of the Z/W boson
- ▶ Three analysis categories: **0L**:  $Z \rightarrow \nu\nu$  **1L**:  $W \rightarrow l\nu$ **2L**:  $Z \rightarrow l^+l^-$
- $\triangleright \text{ Dominant background:}$ Z+jets, W+jets,  $t\bar{t}$  (1L), VZ, QCD (0L)
- $\triangleright$  Data collected during the **Run-2 of the LHC**: 138 fb<sup>-1</sup>

**Resolved analysis** ( $p_T < 300 \text{ GeV}$ ) Higgs boson reconstruced from 2 c-tagged AK4 jets ( $\Delta R = 4$ )  $\rightarrow$  2-jets topology



https://cds.cern.ch/record/2682635?ln=it





Boosted analysis (p<sub>T</sub> > 300 GeV)
 Higgs boson reconstruced as a single large radius AK15 jet (ΔR = 1.5)
 → Single-jet topology

SM@LHC2024

### VH production mode (2/4)

### **Resolved analysis**

Higgs boson candidate reconstructed from 2 AK4 jets tagged as charmed by means of the DeepJet algorithm



Boosted Decision Tree (BDT) trained in each category for signal/background discrimination



> Signal strentgh modifier  $\mu$  extracted from a maximum likelihood fit to data of the BDT output score

$$\mu = \frac{(\sigma B)_{obs}}{(\sigma B)_{SM}}$$







### VH production mode (3/4)

### **Boosted analysis**

- Higgs boson candidate (H<sub>cand</sub>) reconstructed as a single
   AK15 jet tagged through the Run-2 state-of-the-art
   ParticleNet algorithm (graph neural network)
- $\triangleright$  **BDT** trained to discriminate signal from main bkg (V+jets,  $t\bar{t}$ ) input variables not correlated with H<sub>cand</sub> mass



 Signal extracted from a fit of the H<sub>cand</sub> mass in each analysis category





### VH production mode (4/4)

#### Combination

- ▷ Simultaneous fit of the two analyses → improved sensitivity
- ▷ Upper limit on the signal strength  $\mu_{VH(cc)}$  at 95% CL:

 $\frac{\sigma(VH) \cdot B(H \to c\bar{c})}{\sigma(VH)_{SM} \cdot B(H \to c\bar{c})_{SM}} < 14$ 

Constraints on the Higgs-charm Yukawa coupling modifier k<sub>c</sub>:

#### $1.1 < |k_c| < 5.5$

▷ Validation on  $Z \rightarrow cc$ : first time observed at a hadron collider with a significance of  $5.7\sigma$ 



Best result up to date!



## ggF production mode (1/2)



- Only boosted analysis:
   Higgs boson reconstructed from a single
   AK8 jet (p<sub>T</sub> > 450 GeV), tagged with
   DeepDoubleX
- Soft-drop algorithm applied to the jet mass (m<sub>SD</sub>) to remove soft and wide-angle radiation
- VBF and VH (orthogonal to VH analysis) are considered as signal

SM@LHC2024



### ggF production mode (2/2)





- Signal strength  $\mu_H$  extracted from a binned (m<sub>SD</sub>, p<sub>T</sub>) maximum likelihood fit to data
- ▷ Upper limit on the signal strength  $\mu_{VH(cc)}$  at 95% CL:

 $\frac{\sigma(ggH) \cdot B(H \to c\bar{c})}{\sigma(ggH)_{SM} \cdot B(H \to c\bar{c})_{SM}} < 45$ 

 $\triangleright$  Validation on **Z\rightarrowcc**:

observed with significance >>  $5\sigma$ 

#### A. Zaza

### $J/\psi$ final state

#### Searches performed by CMS: $H \rightarrow J/\psi + \gamma$ , $H \rightarrow J/\psi + Z$ , $H \rightarrow J/\psi J/\psi$

Target  $I/\psi \rightarrow \mu\mu$ 



SM@LHC2024





### Summary



- $\triangleright$  Two Higgs production mechanisms explored:
  - VH (highest sensitivity)  $\mu_{VH(cc)} < 14 @ 95\%$  CL,  $1.1 < |k_c| < 5.5$

```
- ggF
\mu_{ggH(cc)} < 45 @ 95\% CL
```



During Run-3 of LHC (started in 2022) it would be possible to furtherly improve this result by investigating other production mechanisms and by increasing the statistics Thank you for listening!

angela.zaza@cern.ch

# Back-up

angela.zaza@cern.ch