

Physics Institute

Energy Scaling Behaviour of Intrinsic k_T in Drell-Yan events

<u>Weijie Jin</u>, Armando Bermudez Martinez, Sara Taheri Monfared, Mikel Mendizabal Morentin, Kyle Cormier, Saptaparna Bhattacharya

Intrinsic k_T model in generators

(7)

primordial k

<u>do</u>/ dfr

O

Intrinsic (primordial) kT:

The **transverse momenta** of the partons in the incoming colliding hadrons

- \rightarrow **Not calculable** in perturbative QCD
- \rightarrow Described by phenomenological models

Free parameters to determine

In PYTHIA & HERWIG:

The intrinsic kT is modelled by **Gaussian** distributions \rightarrow Width (σ) of the distribution determined from tuning to data

PYTHIA parameter: $\sigma = \sqrt{2}$ * BeamRemnants:primordialKThard HERWIG parameter: σ = ShowerHandler:InstrinsicPTGaussian

Intrinsic k_T + parton shower $\rightarrow p_T(Z/\gamma)$

 $\sigma \uparrow \rightarrow$ smears the intrinsic $k_T \rightarrow$ low $p_T(Z/\gamma)$ flattened

Intrinsic k_T tune to $p_T(Z/\gamma)$ has both **non-perturbative** & **perturbative** QCD effects

Fermi motion of partons, non-resolvable gluon emissions...

parton shower models

Tune to DY data in a wide range

Tuning strategy:

Underlying event (UE) and intrinsic kT tune can be decoupled UE parameters are tuned for various colliding energies

Fix the PDF & UE parameters Tune intrinsic kT to DY pT at various \sqrt{s} individually

Center of mass energy	Experiments	Q [GeV] (dilepton mass)
38.8 GeV	E866/NuSea pp fixed target	4 - 12.85
62 GeV	R209 pp collisions	5 - 8
200 GeV	PHENIX pp collisions	4.8 - 8.2
1.8 TeV	CDF/D0 p+p- collisions	Z mass
1.96 TeV	D0 p+p- collisions	Z mass
2.76 TeV	CMS pPb collisions	Z mass
8 TeV	ATLAS pp collisions	46 - 150
8.16 TeV	CMS pPb collisions	15 - 120
13 TeV	CMS/LHCb pp collisions	50 - 1000 / Z mass

Tune with various generator setups

Instrinsic kT tune under various **generator** & **UE** setups

Generator	UE tune	PDF	αs	Shower model
Pythia 8	CP5	NNPDF3.1 NNLO	0.118	pT+ ISR rapidity order
	CP4	NNPDF3.1 NNLO	0.118	pT order
	CP3	NNPDF3.1 NLO	0.118	pT order
Herwig 7	CH2	NNPDF3.1 NNLO (PS) NNPDF3.1 LO (MPI)	0.118	angular order
	CH3	NNPDF3.1 NNLO (PS) NNPDF3.1 LO (MPI)	0.118 (PS) 0.13 (MPI)	angular order

DY ME:

MadGraph5 MC@NLO at NLO QCD

Showering:

- Pythia / Herwig
- QCD NLO α_s
- Various PDF
- Different shower models
- Different UE tune parameters

Study the intrinsic kT behaviours under these different conditions

Dependence of intrinsic k_T tunes on collision energy

Intrinsic kT DY pT distribution

intrinsic kT parameter compensates ISR in describing DY pT

- Identical slopes (~0.16) for all different shower models
- Different intercepts

The **ISR starting scale** is regularised in the generators:

- SpaceShower:pT0Ref in Pythia (default=2)
- SudakovCommon:pTmin in Herwig (default=1.22)
- \rightarrow Intrinsic kT compensates the ISR below the cutoff

Change the ISR cutoff to lower values \rightarrow lower intrinsic kT tunes < \rightarrow we did not see significant change in

 \rightarrow we did not see significant change in the slopes

More ISR allowed → less intrinsic kT needed to describe DY pT

Interpretation of the tuning results

Collinear MC generator (e.g. Pythia, Herwig): **Initial-state shower** handles the parton shower from the **soft cutoff** to the **hard-scattering scale**

 \rightarrow Missing contribution: the soft parton emissions not generated \rightarrow non-perturbative & perturbative components

non-resolvable gluon emissions

cut on parton emissions by the regularization factor in the generator

We observe:

- The slope is identical for all shower models and setups of Pythia & Herwig
- Cascade tunes: (arXiv:2309.11802)
 - Include non-perturbative Sudakov form factor
 - Accounting for more non-resolvable gluon emissions
 - Weaker \sqrt{s} dependence

 \rightarrow The slope reflects **non-perturbative** effects

Impacts of hard-scattering scale on the intrinsic kT tune

M(I+I-) in DY events ~ hard scattering scale

Does it affect the intrinsic kT tune?

The 38.8 GeV, 8 TeV, 8.16 TeV and 13 TeV measurements provide $pT(I^+I^-)$ data at various $M(I^+I^-)$ ranges \rightarrow Tune the intrinsic kT to the data in these ranges individually

CMS *Preliminary* 38.8 GeV 8 TeV 8.16 TeV 13 TeV CP5 CH2 Fit CP5. χ^2_{lin} /n.d.f. = 0.58 Fit CH2. χ_{lin} /n.d.f. = 0.12 ^{__} CP5 CP5 CP5 CH2 CH2 CH2 Fit CP5. Fit CP5. Fit CP5. 1.0 χ^2_{lin} /n.d.f. = 0.47 χ^2_{lin} /n.d.f. = 0.48 χ^2_{lin} /n.d.f. = 0.63 Fit CH2, Fit CH2, Fit CH2, χ^2_{lin} /n.d.f. = 0.78 χ^2_{lin} /n.d.f. = 0.28 χ^2_{lin} /n.d.f. = 0.54 0.5 50 100 500 10 50 100 150 1000 5 $M(l^+l^-)$ [GeV]

The tune results are identical in different M(I+I-) ranges at the same \sqrt{s}

The hypothesis is supported by the goodness of fit (χ^2/ndf)

Weak/no dependence of intrinsic kT on the M(I+I-) range

 $M(I^+I^-) = x_1 x_2 \sqrt{s}$

(x1, x2 are the momentum fractions of colliding partons in protons)

Intrinsic k_T tunes not affected by x_1 , x_2 of partons

Interpretation of the tuning results

• valid for 3(2) orders of magnitude in \sqrt{s} (Q)

Summary

Energy dependent intrinsic kT tune from 38.8 GeV to 13 TeV

- Similar energy scaling behavior of int-kT width for Pythia (CP3, CP4, CP5) and Herwig (CH2,CH3)
- Linear relation log(int-kT) log(\sqrt{s}) \rightarrow a model for future measurement
- Identical slopes for all the setups
- Further theoretical interpretation → potential non-perturbative features in the energy-scaling behaviour
 - Motivates the implementation of energy-dependent intrinsic k_T parametrization in generators
 - The model can be extrapolated to higher energy (e.g. 13.6 TeV)

Impact of the hard scattering scale on intrinsic $k_{\rm T}$

- Identical int-kT tune in different M(I+I-) ranges at the same \sqrt{s}
- Weak/no dependence of int-kT on the hard scattering scale

Decouple the underlying-event tune & intrinsic kT tune

Tuning procedure

Uncertainty sources

The tuning results come from minimisation of the goodness of fit:

More accurate estimation:

- generate toy data to mimic the measurement fluctuations according to the data unc.
- tune to multiple toys of the data
- estimate the covariance matrix and uncertainty from variations of the toy tunes

Uncertainty sources

The tuning results come from minimization of the goodness of fit:

$$\chi^{2}(p) = \sum_{bin} \frac{(MC_{bin}(p) - data_{bin})^{2}}{\sigma_{data_{bin}}^{2} + \sigma_{MC_{bin}(p)}^{2}}$$

- Uncertainty from the data uncertainty and MC statistics \rightarrow Estimated from the parameter range corresponding to minimum χ^2+1
- Uncertainty from the **interpolation of the MC response and its uncertainty** → Estimated by the tune difference of using order-3 & order-5 polynomials

Uncertainty from the choice of the pT range for tuning ← The low pT (a few GeV) distribution is sensitive to intrinsic kT → Estimated by the difference of tuning to pT 0 - 10 GeV & 0 - 15 GeV for √s > 1 TeV
0 - max pT in data & 0 - (max pT - 2) in data for √s < 1 TeV

Uncertainty decomposition

The 5 setups were tuned to the same measurements \rightarrow the uncertainty from the **data** is **highly correlated** for tunes at the same energy

 \rightarrow the correlation estimated from toy experiments

- The contribution from MC stat. is uncorrelated
- We assume the contribution from **tuning range** and **interpolation** to be **uncorrelated**

Intrinsic kT tune results

Validate the intrinsic kT tunes:

- Generate DY events with the tuned parameters
- Generate events with up & down variations
- Compare the pT predictions with data
 - Tune unc. from the difference between up & down

MC/data ratio after the tune DY pT 0 -10 TeV Agreement with data is verified

