Constraining the leptoquark pair-production cross-section using tau leptons and *b*-jets with the ATLAS detector

Federico Morodei

on behalf of the ATLAS Collaboration

Standard Model at the LHC

8 May 2024

Motivation

Analysis paper: <u>Eur. Phys. J. C 83 (2023) 1075</u>

Leptoquarks (LQs):

- Predicted by many SM extensions.
- Carry baryon and lepton quantum numbers.
- Could explain the observations of B-meson anomalies suggesting lepton universality violation.

Purpose of the analysis:

- Search for pair-production of third-generation up-type LQs.
- Consider both scalar and vector LQs (with minimal-coupling and Yang-Mills scenarios).
- Use the full Run 2 dataset collected by ATLAS (139 fb⁻¹) at $\sqrt{s} = 13$ TeV.

Signal regions

2 orthogonal signal regions: $\tau_{lep}\tau_{had}$ and $\tau_{had}\tau_{had}$

$ au_{ m lep} au_{ m had}$	$ au_{ m had} au_{ m had}$		
 One light-lepton (e/μ) and one τ_{had-vis}. Opposite charges. Single-e/μ triggers. e/μ minimum p_T: 21-27 GeV (depending on data period). τ_{had} minimum p_T: 100 GeV. 	 Two τ_{had-vis} with loose RNN working point (85% efficiency for 1-prong τ_{had}). Opposite charges. No light-leptons. Single-τ_{had} trigger. Offline triggered-τ_{had} minimum p_T: 100-180 GeV (depending on data period). 		
• >= 2 jet (at least one <i>b</i> -tagged). • $m_{\tau\tau}^{\text{MMC}} \notin (40\text{-}150) \text{ GeV}.$ • $E_{\text{T}}^{\text{miss}} > 100 \text{ GeV}.$ • $s_{\text{T}} > 600 \text{ GeV}.$			

 $m_{\tau\tau}^{\rm MMC}$: the Missing Mass Calculator (MMC) reconstructs the pre-decay $\tau\tau$ invariant mass using the momenta of the visible decay products and the $p_{\rm T}^{\rm miss}$.

 $s_{\rm T}$: scalar sum of $p_{\rm T}$ of light-lepton (for $au_{
m lep} au_{
m had}$), $au_{
m had-vis}$, two jets and $E_{\rm T}^{
m miss}$.

ATLAS Multivariate signal extraction

- Signal extracted using multivariate discriminant.
- Parameterised Neural Network (PNN) with generated LQ mass as parameter.
- PNN made of 3 hidden layers with 32 nodes each.
- PNN score distribution used as discriminant.
- PNN training:
 - Signal: scalar LQ samples (all masses simultaneously).
 - Background: $t\bar{t}$ and single-top MC samples.

	Variable	$ au_{ m lep} au_{ m had}$ channel	$ au_{ m had} au_{ m had}$ channel
Ξų	$ au_{ m had-vis} p_{ m T}^0$	1	1
ы Б	s _T	1	✓
	N_{b-jets}	\checkmark	1
a a	$m(\tau, \text{jet})_{0,1}$		1
	$m(\ell, \text{jet}), m(\tau_{\text{had}}, \text{jet})$	1	
$\leq \delta$	$\Delta R(\tau, \text{jet})$	\checkmark	\checkmark
	$\Delta \phi(\ell, E_{ m T}^{ m miss})$	\checkmark	
	$E_{\rm T}^{\rm miss} \phi$ centrality	1	1

Backgrounds

Main backgrounds:

- Top production (from MC + data-driven corrections).
- Z + heavy-flavour jets (from MC + data-driven corrections).
- Multijet (data-driven, in $\tau_{had} \tau_{had}$ only).

Top background corrections:

- Shape corrections from 99%-pure top CR: 2 *b*-jets, 2 light-leptons, $m_{\ell\ell} > 110$ GeV.
- Normalisation corrections from fit in 97%- pure $\tau_{\text{lep}}\tau_{\text{had}}$ CR: same SR selections but $s_{\text{T}} \in (400-600)$ GeV and any $\tau_{\text{had}} p_{\text{T}}$.

Multijet background data-driven estimation:

- fake factors (FF) derived from same-charge data CR after subtracting all other MC contributions.
- FF applied to a region with 1 τ_{had}^{ID} and $1\tau_{had}^{\text{antiID}}$.

 Data ATLAS Fake τ_{had} (top) τ_{had-vis} SF CR Single top Other Uncertaintv Pre-fit background 800 600 400 200 Data/Pred 500 m_⊤(I, Eⁿ Data √s = 13 TeV, 139 fb 10^{7} Fake τ_{had} (top) Single top > 100 GeV bin Other Uncertaintv Pre-fit background 10² 10

300 400 500 600

10

Data/Pred

 $FF = \frac{N(\tau_{had}^{ID}, \tau_{had}^{ID})}{N(\tau_{had}^{ID}, \tau_{had}^{AntiID})}$

m_T(I, E^{miss}) [GeV]

Results

- Binned profile-likelihood fit.
- Discriminant variable: PNN score distribution.
- 2 SRs: $\tau_{lep}\tau_{had}$ and $\tau_{had}\tau_{had}$.
- A separate fit for each LQ hypothesis.
- Top normalisation as free floating parameter.

Event yields for background-only fit

	$ au_{ m lep} au_{ m had}$ channel	$ au_{ m had} au_{ m had}$ channel
tī	2430 ±110	94 ± 12
single-top	365 ± 26	20 ± 5
Fake τ_{had} (top)	140 ± 100	36 ± 11
$Z \rightarrow \tau \tau + (bb, bc, cc)$	13.1 ± 2.7	10.1 ± 1.3
Multi-jet	-	30 ± 16
Other	91 ± 35	18 ± 7
Total Background	3040 ± 60	207 ± 14
Data	3031	211

No significant excess observed

Interpretation

- No significant excess observed.
- LQ pair-production cross-section limits derived with CL_S method as a function of m_{LQ} (assuming $B(LQ \rightarrow b\tau) = 1$).
- Limits derived combining both SRs.
- $au_{had} au_{had}$ and $au_{lep} au_{had}$ have equal sensitivity at high m_{LQ} .
- $\tau_{had}\tau_{had}$ is two times more sensitive than $\tau_{lep}\tau_{had}$ at low m_{LQ} .

95% CL lower limits on LQ mass

	Obs. limit [GeV]	Exp. limit [GeV]
Scalar LQ	1460	1410
Vector LQ (minimal-coupling)	1650	1590
Vector LQ (Yang-Mills)	1910	1820

- Improvement of 450 GeV for scalar LQs with respect to 36 fb⁻¹ result [JHEP 06 (2019) 144].
- Improvement of 200 GeV in all three models with respect to LQLQ → tvtv result [Phys. Rev. D 104 (2021) 112005].

Federico Morodei

Conclusion

- Search for pair-produced LQs decaying to bτ.
- Signal extraction with multivariate discriminant based on PNN score.
- Use of data-driven techniques for background estimation.
- No significant deviations from SM expactions are observed.
- Improved exclusion limits on LQ mass with respect to previous ATLAS results.
- Results can be expressed as upper limits on the branching ratio to $b\tau$ as a function of $m_{\rm LQ}$.

BACKUP

Z + jets background

Normalisation of Z+ heavy-flavour jets background from data with a fit in Z CR: 2 same-flavour light-leptons + 2 heavy-flavour jets, $m_{\ell\ell} \in (75,110)$ GeV (60% Z and 40% $t\bar{t}$ events)

TLAS Ranking plots of systematics

 $m_{LO} = 1400 \, \text{GeV}$

 $m_{LO} = 500 \,\mathrm{GeV}$

UNIVERSITÀ DI ROMA

ATLAS Branching ratio limits (vector LQ)

