Rare decays of B_c Mesons

Nakul R. Soni and Pietro Santorelli

Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, Complesso Universitario di Monte S. Angelo Edificio 6, via Cintia, 80126 Napoli, Italy.

Based on arXiv:2404.15085 [hep-ph]

In Collaboration with: Jignesh N. Pandya (SPU Vallabh Vidyanagar) and Mikhail A. Ivanov (JINR)

Standard Model at the LHC 2024, May 07-10, 2024 Rome, *Italy*

< ロト < 同ト < ヨト < ヨト

Motivation

- Flavour changing neutral currents occur at electroweak loop level in the Standard Model (SM).
- Several anomalies reported for FCNC b
 ightarrow s decays.
- $R_{K^{(*)}}$ and some other observables are deviating by $2 3\sigma$ from SM.
- However, recent simultaneous measurements by LHCb on $R_{K^{(*)}}$ in low and central q^2 range shows very good agreement with SM prediction at $0.2\sigma^1$.
- Similarly, $b \to d\ell\ell$ can also serve as important probe as they also follow the same FCNC at quark level.
- Bell² and LHCb³ have provided some important data for the channels $B \to (\rho, \omega, \pi, \eta) \ell^+ \ell^-$ and $B_s^0 \to \bar{K}^{*0} \mu^+ \mu^-$.
- LHCb also provided the relative ratios for $(b \to d\ell^+\ell^-)/(b \to s\ell^+\ell^-)$ transition in the channels $\mathcal{B}(B^+ \to \pi^+\mu^+\mu^-)/\mathcal{B}(B^+ \to K^+\mu^+\mu^-)$ and $\mathcal{B}(B^0_s \to \bar{K}^{*0}\mu^+\mu^-)/\mathcal{B}(\bar{B}^0 \to \bar{K}^{*0}\mu^+\mu^-)^4$.
- These anomalies can also be tested in rare B_c decays.

¹R. Aaij *et al.* (LHCb Collaboration), Phys. Rev. D **108**, 032002 (2023).

- ²I. Adachi *et al.* (Belle-II and Belle Collaboration), arXiv:2404.08133 [hep-ph].
- ³R. Aaij et al. (LHCb Collaboration), JHEP 04, 029 (2017).
- ⁴R. Aaij et al. (LHCb Collaboration), JHEP **07**, 125 (2012), JHEP **07**, 020 (2018).

Nakul Soni (INFN Naples)

 $B_c \rightarrow D_{(s)}\ell^+\ell^-$ arXiv: 2404.15085

SM @ LHC at Rome 2 / 20

Effective Hamiltonian and Hadronic Matrix Element for $b ightarrow q\ell\ell$

$$\mathcal{H}_{eff}^{SM} = -\frac{4G_F}{\sqrt{2}} V_{tq}^* V_{tb} \left\{ \sum_{i=1}^{10} C_i(\mu) \mathcal{O}_i(\mu) + \frac{V_{ub}^* V_{uq}}{V_{tb}^* V_{tq}} \sum_{i=1}^2 C_i(\mu) [\mathcal{O}_i(\mu) - \mathcal{O}_i^u(\mu)] \right\}$$

$$\mathcal{M}(B_c \to D_{(s)}^{(*)}\ell^+\ell^-) = \frac{G_F\alpha}{\sqrt{2\pi}} V_{tq}^* V_{tb} \left\{ C_9^{\text{eff}} \langle D_{(s)}^{(*)} | \bar{q}\gamma_\mu P_L b | B_c \rangle (\bar{\ell}\gamma^\mu \ell) \right. \\ \left. + C_{10} \langle D_{(s)}^{(*)} | \bar{q}\gamma_\mu P_L b | B_c \rangle (\bar{\ell}\gamma^\mu \gamma_5 \ell) \right. \\ \left. - \frac{2\bar{m}_b}{q^2} C_7^{\text{eff}} \langle D_{(s)}^{(*)} | \bar{q}i\sigma^{\mu\nu} q_\nu P_R b | B_c \rangle (\bar{\ell}\gamma^\mu \ell) \right\}$$

where q = d for $B_c \to D^{(*)}\ell^+\ell^-$ and q = s for $B_c \to D_s^{(*)}\ell^+\ell^-$.

Nakul Soni (INFN Naples)

 $B_c \rightarrow D_{(s)} \ell^+ \ell^-$ arXiv: 2404.15085

SM @ LHC at Rome 3 / 20

Image: A match a ma

Wilson Coefficients

$$C_9^{\text{eff}}(\mu) = \xi_1 + (V_{ub}^* V_{uq}) / (V_{tb}^* V_{tq}) \xi_2,$$

with

$$\begin{split} \xi_1 &= C_9 + C_0 h^{\text{eff}}(\hat{m}_c, \hat{s}) - \frac{1}{2} h(1, \hat{s}) (4C_3 + 4C_4 + 3C_5 + C_6) \\ &- \frac{1}{2} h(0, \hat{s}) (C_3 + 3C_4) + \frac{2}{9} (3C_3 + C_4 + 3C_5 + C_6) \\ \xi_2 &= \left[h^{\text{eff}}(\hat{m}_c, \hat{s}) - h^{\text{eff}}(\hat{m}_u, \hat{s}) \right] (3C_1 + C_2) \end{split}$$

where $C_0 \equiv 3C_1 + C_2 + 3C_3 + C_4 + 3C_5 + C_6$.

Table: SM Wilson coefficients ⁵

<i>C</i> ₁	<i>C</i> ₂	<i>C</i> ₃	<i>C</i> ₄	C_5	<i>C</i> ₆	$C_7^{ m eff}$	C9	C ₁₀
-0.2632	1.0111	-0.0055	-0.0806	0.0004	0.0009	-0.2923	4.0749	-4.308

⁵S. Descotes-Genon, T. Hurth, J. Matias, and J. Virto, JHEP **05**₇ 137 (2013). (≥) ≥

Nakul Soni (INFN Naples)

 $B_c \rightarrow D_{(s)} \ell^+ \ell^-$ arXiv: 2404.15085

SM @ LHC at Rome 4 / 20

Quark loop function

$$\begin{split} h(\hat{m}_q, \hat{s}) &= -\frac{8}{9} \ln \hat{m}_q + \frac{8}{27} + \frac{4}{9} x \\ &- \frac{2}{9} (2+x) |1-x|^{1/2} \begin{cases} \left(\ln \left| \frac{\sqrt{1-x}+1}{\sqrt{1-x}-1} \right| - i\pi \right), & \text{for } x \equiv \frac{4\hat{m}_q^2}{\hat{s}} < 1, \\ 2 \arctan \frac{1}{\sqrt{x-1}}, & \text{for } x \equiv \frac{4\hat{m}_q^2}{\hat{s}} > 1, \end{cases} \\ h(0,s) &= \frac{8}{27} - \frac{4}{9} \ln s + \frac{4}{9} i\pi, \end{split}$$

further the functions,

$$\begin{split} h^{\text{eff}}(\hat{m}_{c},\hat{s}) &= h(\hat{m}_{c},\hat{s}) + \frac{3\pi}{\alpha^{2}C_{0}} \sum_{V=J/\psi,\psi(2S)} \frac{m_{V}\mathcal{B}(V \to \ell^{+}\ell^{-})\Gamma_{V}}{m_{V}^{2} - q^{2} - im_{V}\Gamma_{V}}, \\ h^{\text{eff}}(\hat{m}_{u},\hat{s}) &= h(\hat{m}_{u},\hat{s}) + \frac{3\pi}{\alpha^{2}C_{0}} \sum_{V=\rho^{0},\omega,\phi} \frac{m_{V}\mathcal{B}(V \to \ell^{+}\ell^{-})\Gamma_{V}}{m_{V}^{2} - q^{2} - im_{V}\Gamma_{V}}. \end{split}$$

Nakul Soni (INFN Naples)

 $B_c \rightarrow D_{(s)}\ell^+\ell^-$ arXiv: 2404.15085

Э

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Covariant Confined Quark Model of Hadrons

Interaction Lagrangian

$$L_{int} = g_M M(x) \int dx_1 \int dx_2 F_M(x; x_1, x_2) \cdot \bar{q}_{f_1}^a(x_1) \Gamma_M q_{f_2}^a(x_2) + H.c.$$

Vertex function

$$F_M(x, x_1, x_2) = \delta^{(4)} \left(x - \sum_{i=1}^2 w_i x_i \right) \Phi_M \left((x_1 - x_2)^2 \right)$$

where

$$ilde{\Phi}_M(-K^2) = exp\left(k^2/\Lambda_M^2\right)$$

• IR confinement⁶

$$\Pi^{c} = \int_{0}^{1/\lambda^{2}} dt t^{n-1} \int_{0}^{1} \delta\left(1 - \sum_{i=1}^{n} \alpha_{i}\right) F(t\alpha_{1}, ..., t\alpha_{n})$$

⁶T. Branz, A. Faessler, T. Gutsche, M. A. Ivanov, J. G. Korner and V. E. Lyubovitskij, Phys. Rev. D **81**, 034010 (2010).

Nakul Soni (INFN Naples)

 $B_c \rightarrow D_{(s)}\ell^+\ell^-$ arXiv: 2404.15085

SM @ LHC at Rome 6 / 20

Quark masses m_{qi} , the infrared cutoff parameter λ and the size parameters Λ_{H_i} (all in GeV)

Nakul Soni (INFN Naples)

 $B_c \rightarrow D_{(s)}\ell^+\ell^-$ arXiv: 2404.15085

SM @ LHC at Rome 7 / 20

(日) (四) (三) (三)

Transition form factors

$$\begin{split} D_{(s)}(p_2) &| \quad \bar{q} O^{\mu} b \mid B_c(p_1) \rangle \\ &= & N_c g_{B_c} g_{D_{(s)}} \int \frac{d^4 k}{(2\pi)^4 i} \tilde{\phi}_{B_c} (-(k+w_{13}p_1)^2) \tilde{\phi}_{D_{(s)}} (-(k+w_{23}p_2)^2) \\ &\times \operatorname{tr} [O^{\mu} S_1(k+p_1) \gamma^5 S_3(k) \gamma^5 S_2(k+p_2)] \\ &= & F_+(q^2) P^{\mu} + F_-(q^2) q^{\mu} \; , \end{split}$$

$$\begin{aligned} \langle D_{(s)}(p_2) &| & \bar{q}\sigma^{\mu\nu}(1-\gamma^5)b \mid B_c(p_1) \rangle \\ &= & N_c g_{B_c} g_{D_{(s)}} \int \frac{d^4k}{(2\pi)^4 i} \tilde{\phi}_{B_c}(-(k+w_{13}p_1)^2) \tilde{\phi}_{D_{(s)}}(-(k+w_{23}p_2)^2) \\ &\times \operatorname{tr}[\sigma^{\mu\nu}(1-\gamma^5)S_1(k+p_1)\gamma^5S_3(k)\gamma^5S_2(k+p_2)] \\ &= & \frac{iF_T(q^2)}{m_1+m_2} (P^{\mu}q^{\nu}-P^{\nu}q^{\mu}+i\varepsilon^{\mu\nu Pq}). \end{aligned}$$

Nakul Soni (INFN Naples)

 $B_c \rightarrow D_{(s)}\ell^+\ell^-$ arXiv: 2404.15085

SM @ LHC at Rome 8 / 20

æ

▲□ > ▲圖 > ▲ 圖 > ▲ 圖 >

Transition form factors

$$\begin{split} \langle D^*_{(s)}(p_2,\epsilon) &| \quad \bar{q}O^{\mu}b \mid B_c(p_1) \rangle \\ &= N_c g_{B_c} g_{D^*_{(s)}} \int \frac{d^4k}{(2\pi)^{4i}} \tilde{\phi}_{B_c}(-(k+w_{13}p_1)^2) \tilde{\phi}_{D^*_{(s)}}(-(k+w_{23}p_2)^2) \\ &\times \operatorname{tr}[O^{\mu}S_1(k+p_1)\gamma^5 S_3(k) \not \in_{\nu}^{\dagger}S_2(k+p_2)] \\ &= \frac{\epsilon^{\dagger}_{\nu}}{m_1+m_2} [-g^{\mu\nu}P \cdot qA_0(q^2) + P^{\mu}P^{\nu}A_+(q^2) + q^{\mu}P^{\nu}A_-(q^2) \\ &+ i\varepsilon^{\mu\nu\alpha\beta}P_{\alpha}q_{\beta}V(q^2)] \;, \end{split}$$

$$\begin{split} \langle D^*_{(s)}(p_2,\epsilon) &| \quad \bar{q}\sigma^{\mu\nu}q_{\nu}(1+\gamma^5)b \mid B_c(p_1) \rangle \\ &= N_c g_{B_c}g_{D^*_{(s)}} \int \frac{d^4k}{(2\pi)^{4}i} \tilde{\phi}_{B_c}(-(k+w_{13}p_1)^2) \tilde{\phi}_{D^*_{(s)}}(-(k+w_{23}p_2)^2) \\ &\times \operatorname{tr}[\sigma^{\mu\nu}q_{\nu}(1+\gamma^5)S_1(k+p_1)\gamma^5S_3(k) \not e^{\dagger}_{\nu}S_2(k+p_2)] \\ &= \epsilon^{\dagger}_{\nu}[-(g^{\mu\nu}-q^{\mu}q^{\nu}/q^2)P \cdot qa_0(q^2) + i\varepsilon^{\mu\nu\alpha\beta}P_{\alpha}q_{\beta}g(q^2) \\ &+ (P^{\mu}P^{\nu}-q^{\mu}P^{\nu}P \cdot q/q^2)a_{+}(q^2)]. \end{split}$$

Nakul Soni (INFN Naples)

 $B_c \rightarrow D_{(s)}\ell^+\ell^-$ arXiv: 2404.15085

æ

▲口 → ▲圖 → ▲ 国 → ▲ 国 →

Transition form factors

 $B_c \rightarrow D_{(s)}\ell^+\ell^-$ arXiv: 2404.15085

SM @ LHC at Rome 10 / 20

Differential branching fractions

$$\frac{d\Gamma(B_c \to D_{(s)}^{(*)}\ell^+\ell^-)}{dq^2} = \frac{G_F^2}{(2\pi)^3} \left(\frac{\alpha V_{tb}^* V_{tq}}{2\pi}\right)^2 \frac{|\mathbf{p}_2|q^2\beta_\ell}{12m_{B_c}^2} \mathcal{H}_{\text{tot}}$$

where

$$\begin{aligned} \mathcal{H}_{\rm tot} &= \frac{1}{2} (\mathcal{H}_U^{11} + \mathcal{H}_U^{22} + \mathcal{H}_L^{11} + \mathcal{H}_L^{22}) \\ &+ \delta_{\ell\ell} \left(\frac{1}{2} \mathcal{H}_U^{11} - \mathcal{H}_U^{22} + \frac{1}{2} \mathcal{H}_L^{11} - \mathcal{H}_L^{22} + \frac{3}{2} \mathcal{H}_S^{22} \right). \end{aligned}$$

Here H's are the helicity structure functions which depends on form factors.

• $\delta_{\ell\ell} = 2m_{\ell}^2/q^2$ • $\beta_{\ell} = \sqrt{1 - 4m_{\ell}^2/q^2}$ • $|p_2| = \lambda^{1/2} (m_{B_c}^2, m_{D_{(s)}^{(*)}}^2, q^2)/2m_{B_c}$ • $v = 1 - m_{\ell}^2/q^2$

Nakul Soni (INFN Naples)

 $B_c \rightarrow D_{(s)} \ell^+ \ell^-$ arXiv: 2404.15085

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Differential branching fractions

Nakul Soni (INFN Naples)

 $B_c \rightarrow D_{(s)} \ell^+ \ell^-$ arXiv: 2404.15085

SM @ LHC at Rome 12 / 20

Branching fractions

Channel	Present	LFQM ⁷	CQM ⁷	pQCD ⁸	RQM ⁹
$10^9 \mathcal{B}(B_c^+ ightarrow D^+ e^+ e^-)$	2.640 ± 0.210	4.100	4.000	-	-
$10^9 {\cal B}(B^+_c o D^+ \mu^+ \mu^-)$	2.634 ± 0.210	4.100	4.000	3.790	3.700
$10^9 \mathcal{B}(B_c^+ ightarrow D^+ au^+ au^-)$	0.502 ± 0.085	1.300	1.200	1.030	1.500
$10^8 \mathcal{B}(B_c^+ ightarrow D^+ u^+ u^-)$	1.375 ± 0.136	2.770	2.740	3.130	2.160
$10^9 \mathcal{B}(B^+_c ightarrow D^{*+} e^+ e^-)$	4.960 ± 0.251	10.100	7.900	-	-
$10^9 \mathcal{B}(B_c^+ ightarrow D^{*+} \mu^+ \mu^-)$	3.882 ± 0.160	10.100	7.900	12.100	8.100
$10^9 \mathcal{B}(B_c^+ ightarrow D^{*+} au^+ au^-)$	0.518 ± 0.025	1.800	1.400	1.600	1.900
$10^8 \mathcal{B}(B_c^+ \to D^{*+} \nu^+ \nu^-)$	2.566 ± 0.119	7.640	5.990	11.000	5.120
$10^7 {\cal B}(B_c^+ o D^{*+} \gamma)$	1.213 ± 0.052	-	_	_	-

⁷C. Q. Geng, C.-W. Hwang, and C. C. Liu, Phys. Rev. D **65**, 094037 (2002).
 ⁸W.-F. Wang, X. Yu, C.-D. Lü, and Z.-J. Xiao, Phys. Rev. D **90**, 094018 (2014).
 ⁹D. Ebert, R. N. Faustov, and V. O. Galkin, Phys. Rev. D **82**, 034032 (2010).

Nakul Soni (INFN Naples)

 $B_c \rightarrow D_{(s)}\ell^+\ell^-$ arXiv: 2404.15085

SM @ LHC at Rome 13 / 20

Branching fractions

Channel	Present	LFQM ⁷	CQM ⁷	pQCD ⁸	RQM ⁹
$10^7 \mathcal{B}(B_c^+ ightarrow D_s^+ e^+ e^-)$	0.792 ± 0.076	1.360	1.330	-	-
$10^7 \mathcal{B}(B_c^+ ightarrow D_s^+ \mu^+ \mu^-)$	0.788 ± 0.076	1.360	1.330	1.560	1.160
$10^7 \mathcal{B}(B_c^+ ightarrow D_s^+ au^+ au^-)$	0.136 ± 0.025	0.340	0.370	0.380	0.330
$10^7 \mathcal{B}(B_c^+ ightarrow D_s^+ u^+ u^-)$	4.954 ± 0.591	9.200	9.200	0.129	6.500
$10^7 \mathcal{B}(B_c^+ ightarrow D_s^{*+} e^+ e^-)$	1.550 ± 0.141	4.090	2.810	_	-
$10^7 \mathcal{B}(B_c^+ ightarrow D_s^{*+} \mu^+ \mu^-)$	1.158 ± 0.065	4.090	2.810	4.400	2.120
$10^7 \mathcal{B}(B_c^+ \rightarrow D_s^{*+} \tau^+ \tau^-)$	0.144 ± 0.009	0.510	0.410	0.520	0.350
$10^7 \mathcal{B}(B_c^+ \rightarrow D_s^{*+} \nu^+ \nu^-)$	8.314 ± 0.526	31.200	21.200	40.400	13.500
$10^6 {\cal B}(B_c^+ o D_s^{*+} \gamma)$	$\textbf{4.412} \pm \textbf{0.254}$	_	_	_	_

æ

▲□ > ▲圖 > ▲ 圖 > ▲ 圖 >

Other physical observables

Nakul Soni (INFN Naples)

 $B_c \rightarrow D_{(s)}\ell^+\ell^-$ arXiv: 2404.15085

SM @ LHC at Rome 15 / 20

Other physical observables

 $B_c \rightarrow D_{(s)}\ell^+\ell^-$ arXiv: 2404.15085

SM @ LHC at Rome 16 / 20

3

(日) (四) (三) (三)

Observables	$B_c^+ ightarrow D^{*+} \ell^+ \ell^-$			$B_c^+ ightarrow D_s^{*+} \ell^+ \ell^-$			
	e^+e^-	$\mu^+\mu^-$	$\tau^+\tau^-$	e^+e^-	$\mu^+\mu^-$	$\tau^+\tau^-$	
$-\langle A_{FB} \rangle$	0.186	0.239	0.188	0.131	0.178	0.134	
$\langle F_L \rangle$	0.345	0.430	0.095	0.322	0.419	0.080	
$\langle F_T \rangle$	0.634	0.536	0.200	0.655	0.544	0.163	
$-\langle P_1 \rangle$	0.336	0.506	0.779	0.348	0.557	0.856	
$-\langle P_2 \rangle$	0.195	0.297	0.627	0.134	0.218	0.548	
$10^4 imes \langle P_3 angle$	2.176	2.298	4.801	9.085	14.211	4.754	
$\langle P'_4 \rangle$	0.813	1.050	1.333	0.781	1.049	1.362	
$-\langle P_5' \rangle$	0.365	0.496	0.948	0.249	0.362	0.808	
$10^2 imes \langle P_8' angle$	2.257	2.436	-0.105	0.933	1.034	0.088	
$-\langle S_3 \rangle$	0.107	0.136	0.078	0.114	0.152	0.070	
$\langle S_4 \rangle$	0.190	0.252	0.092	0.179	0.250	0.078	

Э

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

We have studied

- $B_c \to D_{(s)}^{(*)}\ell\ell$ transition form factors and branching fractions which are corresponding to the quark channels $b \to s\ell^+\ell^-$ and $b \to d\ell^+\ell^-$.
- Different physical observables
- Brief comparison with other theoretical predictions

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

References

- Recent publication on $B_{(s)}$ semileptonic decays:
 - J. N. Pandya, P. Santorelli and N. R. Soni, *Prediction of various observables for* $B_s^0 \rightarrow D_s^{(*)-}\ell^+\nu_\ell$ within covariant confined quark model, Eur. Phys. J. ST (2024).
 - N. R. Soni, A. Issadykov, A. N. Gadaria, Z. Tyulemissov, J. J. Patel and J. N. Pandya, Form factors and branching fraction calculations for $B_s \rightarrow D_s^{(*)}\ell^+\nu_\ell$ in view of LHCb observation, Eur. Phys. J. Plus **138**, 163 (2023).
 - N. R. Soni, A. Issadykov, A. N. Gadaria, J. J. Patel and J. N. Pandya, *Rare* b → d decays in covariant confined quark model, Eur. Phys. J. A 58, 39 (2022).
- Some references on foundation of CCQM
 - G. V. Efimov and M. A. Ivanov, Int. J. Mod. Phys. A 04, 2031 (1989).
 - G. V. Efimov and M. A. Ivanov, *The Quark Confinement Model of Hadrons* (IOP, Bristol, 1993).
 - A. Faessler, T. Gutsche, M. A. Ivanov, J. G. Körner and V. E. Lyubovitskij, Eur. Phys. J. direct C 4, 1 (2002).
 - M. A. Ivanov, J. G. Körner and C. T. Tran, Phys. Rev. D 92, 114022 (2015).
 - M. A. Ivanov, J. G. Körner and P. Santorelli, Phys. Rev. D 63, 074010 (2001).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Thank You

 $B_c \rightarrow D_{(s)}\ell^+\ell^-$ arXiv: 2404.15085

SM @ LHC at Rome 20 / 20

æ

▲□▶ ▲御▶ ▲≧▶ ▲≧▶