Ulla Blumenschein Queen Mary University of London On behalf of ATLAS, CMS and LHCb

Recent V + heavy flavour measurements with 13 TeV data

Recent: ATLAS: Measurement of associated production of a **W boson** and a charm quark in pp collisions at \sqrt{s} = 13 TeV, Phys. Rev. D 108 (2023) 032012

Recent: CMS: Measurement of the production cross section for a W **boson in association with a charm** quark in pp collisions at $\sqrt{s} = 13$ TeV Eur. Phys. J. C 84 (2024) 27

NEW: ATLAS: Measurements of the production cross-section for a **Z boson** in association with **b- or c-jets** in pp collisions at \sqrt{s} =13 TeV with the ATLAS detector, arXiv:2403.15093

CMS: Measurement of the production cross section for **Z+b jets** in protonproton collisions at $\sqrt{s} = 13$ TeV, Phys. Rev. D 105 (2022) 092014

CMS: Measurement of the associated production of **a Z boson with charm or bottom** quark jets in pp collisions at \sqrt{s} =13TeV, Phys. Rev. D 102 (2020) 032007

LHCb: Study of Z bosons produced in association with charm in the forward region, Phys. Rev. Lett. 128 (2022) 082001 **CMS:** Measurement of differential cross sections for **Z bosons** produced in association with **charm jet**s in pp collisions at $\sqrt{s} = 13$ TeV, JHEP 04 (2021) 109

W+charm production at CMS and ATLAS

- Excellent probe of the strange quark PDF -

- W^{\mp} with D^{\pm} or $D^{*\pm}$ (ATLAS), $\mathbf{c} \mathbf{tagged jet}$ (CMS)
- Signal extracted as OS (Sig+Bak) SS (Bak)
- Uncertainty systematics limited 4-5%
- Inclusive and differential in p_T and η , charge ratio

ATLAS: 140/fb Phys. Rev. D 108 (2023) 032012

CMS: 138/fb, Eur. Phys. J. C 84 (2024) 27

W+charm production at CMS and ATLAS: η dependence

• Differential cross-sections in bins of $\eta(\ell) \rightarrow \bar{s}, s$ PDF

ATLAS: Data with broader η distribution than nominal MG5_aMC@NLO predictions but consistent when including PDF uncertainties

CMS: Similar trend. Data in agreement with MCFM within total uncertainties.

W+charm production at CMS and ATLAS: Charge ratio

• W charge ratio $R_c = \sigma W^+ \bar{c} / \sigma W^- c \rightarrow \text{sensitive to differences between s and s PDFs.}$ Reduced 1 % uncertainties. CMS measured R_c also differentially in p_T and η

ATLAS: Better agreement with PDF fits that constrain the strange-quark sea to be symmetric at the starting scale: ABMP16 and CT18

CMS: Data consistent with all PDF

 \leftrightarrow

Z+b(b) measurements with 13 TeV data

- Flavour/mass schemes, pQCD, IRC-safe b-jets, PDF - Important background for VH($\rightarrow bb$) and BSM searches

- Final states: $Z + \ge 1B$ -jet, $Z + \ge 2B$ -jets, $p_TB > 20$ GeV (ATLAS) $\leftrightarrow 30$ GeV (CMS)
- Backgrounds: Z+ c/l (\rightarrow SF), top (\rightarrow eµ CR)
- Theory: 5F NLO multi-leg ME+PS (MGaMC FxFx or Sherpa), CMS: older versions ATLAS: NNLO Z+1p fixed order with flavor dressing (Phys. Rev. Lett. 130 (2023) 161901)

Z+b(b) measurements: Inclusive cross sections

ATLAS: $p_T(B-jet) > 20$ GeV, CMS: $p_T(B-jet) > 30$ GeV ATLAS: (5F NLO) multi-leg MC describes Z+b and Z+bb, (4F Zbb NLO) describes only Z+bb ATLAS ATLAS Z+b Z+bb $\sqrt{s} = 13 \text{ TeV}, 140 \text{ fb}^{-1}$ $\sqrt{s} = 13 \text{ TeV}, 140 \text{ fb}^{-1}$ $Z(\rightarrow II) + \ge 1 \text{ b-jet}$ $Z(\rightarrow II) + \ge 2 \text{ b-jets}$ $---10.49 \pm 0.02 \pm 0.59 \text{ pb}$ ---1.394 ± 0.006 ± 0.131 pb Data (stat.) Data (stat.) ▲ MGaMC+Py8 FxFx 5FS (NLO) ▲ MGaMC+Py8 FxFx 5FS (NLO) Sherpa 5FS (NLO) ▼ Sherpa 5FS (NLO) MGaMC+Py8 Zbb 4FS (NLO) □ MGaMC+Py8 5FS (NLO) MGaMC+Py8 Zbb 4FS (NLO) 8 10 12 14 16 18 20 1.5 2 2.5 $\sigma(Z + \ge 1 \text{ b-jet}) \text{ [pb]}$ $\sigma(Z + \ge 2 \text{ b-jets})$ [pb]

CMS: Best match of measurements with LO multi-leg predictions, NLO predictions too large

			MG5_aMC LO	MG5_aMC LO	MG5_aMC NLO	MG5_aMC NLO	
			NNPDF 3.0	NNPDF 3.1	NNPDF 3.0	NNPDF 3.1	
	Channel	Measured	CUETP8M1	CP5	CUETP8M1	CP5	SHERPA
$Z+ \ge 1 b$ jet	ll	$6.52 \pm 0.04 \pm 0.40 \pm 0.14$	6.25	6.34	7.86 ± 0.51	7.03 ± 0.47	8.02
$Z+ \geq 2 b$ jets	ll	$0.65 \pm 0.03 \pm 0.07 \pm 0.02$	0.63	0.71	0.90 ± 0.09	0.77 ± 0.07	0.84

fixed order NNLO describe the data

CMS normalized: NLO shape ok, LO too hard

 $\sim Z$

h

g

Z+b measurements: pT(Z)

b→√√√Z g ʒ ʒ ʒ ʒ ʒ b

NNLO predict softer spectrum

too soft, LO multileg shape ok

ATLAS: Described well by multi-leg NLO and (except for small ΔR) by NNLO

CMS normalized: NLO MC describe shape best, LO underestimates large ΔY

 $\mathcal{N}\mathcal{N}\mathcal{D}$

h

goog

Z+bb measurements: $\Delta \phi$ (bb) (ATLAS) - ΔR (bb) (CMS)

Z+c measurements:

- Flavour/mass schemes, pQCD, PDF Intrinsic charm -

- Selections:
 - ATLAS: **pT(c-jet)** > 20 GeV, lepton $|\eta| < \sim 2.5$
 - CMS: **pT(c-jet)** > 30 GeV, lepton $|\eta| < ~2.4$
 - LHCb: pT(c-jet) 20GeV-100GeV, |y| (Z): 2-4.5

- Backgrounds: Z+l/b, top
- **Uncertainties:**
 - ◆ ATLAS: 13 %, CMS: 6 % (tight charm tagger), LHCb: 11%

NEW: ATLAS: 140/fb: arXiv:2403.15093

CMS: 36/fb JHEP 04 (2021) 109

LHCb: 6/fb Phys. Rev. Lett. 128 (2022) 082001

ATLAS $\sqrt{s} = 13 \text{ TeV}, 140 \text{ fb}^{-1}$ $Z(\rightarrow II) + \ge 1$ c-jet -- 20.89 ± 0.07 ± 2.77 pb **ATLAS:** σ (Z+c) = 20.9 ± 0.1 (stat) ± 2.8 (sys) pb. Data (stat.) Data (stat.+syst.) Compatible with all 5F predictions, ☆ MGaMC+Py8 FxFx 5FS (NLO) ■ Sherpa 5FS (NLO) Zcc NLO does not describe the data 3F) ▲ MGaMC+Py8 4FS (NLO) MGaMC+Py8 Zcc 3FS (NLO) NNPDF40 (pch) □ NNPDF40 (LHCbZc + EMC) **CMS*:** σ (Z+c) = 13.6 ± 0.2 (stat) ± 0.8 (sys) pb \triangle CT14NNLO ♦ BHPS1 (<x>, = 0.6%) \rightarrow Discrepancy with (older) MG5_aMC (NLO) ⊕ BHPS2 (<x>」 = 2.1%) prediction of 17.6 ± 0.4 (theo) pb 45 50 15 20 25 30 40 10 35 $\sigma(Z + \ge 1 \text{ c-jets})$ [pb]

*Translated from published σ (Z+c)/BF(Z \rightarrow *l1*)

Z+c measurements: p_T(c-jet)

ATLAS: 5F NLO multi-leg MC and NNLO describe soft end but underestimate large $p_T(c-jet)$. 4F NLO shape ok but offset.

CMS: All MC with too soft $p_T(c-jet)$ shape.

ATLAS: 5F NLO multi-leg MC and NNLO describe soft end but underestimate large $p_T(c-jet)$. 4F NLO shape ok but offset.

 \leftrightarrow CMS: All shapes ok.

Charm PDF studies by LHCb and ATLAS

no-IC fails to describe y(Z)Better description by PDF with IC: NNPDF 3.0 IC, CT14 BHPS (1% IC) \rightarrow interpreted as evidence for IC by NNPDF collaboration (Nature 608, 483-487 (2022)

ATLAS: mismodelling at large xF

- Only CT14 BHPS2 (2.1% IC) clearly improves large xF

- More realistic PDF fits: only marginal improvement for IC PDFs (e.g. NNPDF4.0 EMC+LHCbZc , last bins)

Leading c-jet x_

Ulla Blumenschein, SM@LHC, 2024

- W+charm:
 - With Run2 precision W+c becomes sensitive to s PDF
- ♦ Z+b(b):
 - Higher precision and larger data sets allow to probe flavor/mass schemes, pQCD and IRC safe b-jet definitions and proton PDF
- Z+charm:
 - LHCb data/MC discrepancy in forward bins → interpreted as IC charm New PDFs with IC which can be probed by Z+c data
 - Higher precision and larger data sets allow for precise differential cross-section measurements, probing flavor/mass schemes, pQCD and proton PDF

Sophisticated V+HF measurements have profited significantly $g \longrightarrow f$ from flavor-tagging improvements in LHC Run2 and from the larger data set.

Close interaction between data and theory allowed for higher measurement precision and advances in pQCD/PDF/jet definitions

Backup

- W+charm:
 - ATLAS full Run2 $|\eta|$ data broader than predictions bot ok with PDF uncertainties
 - ATLAS charge ratio prefers PDF with symmetric strange sea.
- ◆ Z+b:
 - No perfect description, 4F MC underpredicts Z+b
 - ATLAS best: 5F fixed order NNLO and multi-leg MGaMC@NLO
 - CMS: Depending on distribution LO/NLO 5F MGaMC performed better
- ♦ Z+bb:
 - ◆ ATLAS: 4F NLO and 5F multi-leg NLO describe the data
 - CMS: 5F LO multileg underestimate large Δ y
- ◆ Z+c:
 - LHCb data/MC discrepancy in forward bins \rightarrow interpreted as IC charm
 - CMS: Z+c overpredicted by NLO multi-leg MC, LO describes data
 - ATLAS: 3F with large offset
 5F multi-leg describe soft end, underestimate hard end of spectra High-x sensitive variables compared with PDF with different IC,

CMS:

The Drell–Yan (DY) process with exclusive jet multiplicity up to 2 is simulated at next-toleading order (NLO) precision by MADGRAPH5_AMC@NLO (denoted MG5_AMC) [16] version 2.3.2.2 for 2016 data and version 2.6.0 for the 2017–2018 data with the FXFX [17] matching between the jets from matrix element calculations and parton showers. The NNPDF 3.0 NLO and NNPDF 3.1 next-to-NLO (NNLO) PDF sets [18] are used for the 2016 and 2017–2018 datataking periods, respectively.

A third inclusive sample has been produced with SHERPA v2.2.4 [23] to generate pp \rightarrow Z + n jets events, with $n \leq 2$ at NLO and n = 3,4 at LO. The merging with the SHERPA parton shower is done via the MEPS@NLO prescription [24–26] with a matching scale of 20 GeV. The NNPDF 3.0 NLO PDF and a dedicated set of tuned parton shower parameters developed by the SHERPA authors are used. In the matrix element calculation, the value of the NNPDF 3.0

ATLAS:

Process	Generator	Order of pQCD in ME (FS)
$\begin{array}{l} Z \to \ell \ell \\ Z \to \ell \ell \end{array}$	MGaMC+Py8 FxFx Sherpa 2.2.11	xv2.6.5 0–3p NLO (5FS) 0–2p NLO, 3–5p LO (5FS)

Z+b(b) measurements with 13 TeV data

- Flavour/mass schemes, pQCD, IRC-safe b-jets, PDF -Important background for $VH(\rightarrow bb)$ and BSM searches

- Final states: $Z(\rightarrow ll) + \ge 1B$ -jet, $Z(\rightarrow ll) + \ge 2B$ -jets ATLAS/CMS : loose/tight b-tag, p_TB> 20/30 GeV
- Backgrounds:
 - CMS: Z+c/l SF from several CRs, tt: from eµ CR
 - ◆ ATLAS: Z+c/l SF from fit to b-tagging discr., tt: eµ CR
- Theory:
 - CMS: MGaMC FxFx 0-2p NLO, MGaMC MLM 0-4p LO, each with older and newer version, SHERPA 0–2p NLO, 3–4p LO
 - ATLAS: MGaMC FxFx 0–3p NLO, SHERPA 0–2p NLO, 3–5p LO, fixed-order NNLO Z+b (flavour –dressing), MGaMC 4F/5F NLO
- Uncertainties:
 - ◆ CMS: Z+b: 6.5%, Z+bb: 12%, (B-tag, JES, Stats for Z+2B..)
 - ATLAS: Z+b:5.6%, Z+bb: 9.4%, (B-tag, JES, Unfolding..)

CMS: 137/fb: Phys. Rev. D 105 (2022) 092014

- Flavour/mass schemes, pQCD, PDF Intrinsic charm -

- Selections:
 - ATLAS: pT(c-jet) > 20 GeV, |y| < 2.5, lepton: |η| < ~2.5
 - CMS: pT(c-jet) > 30 GeV, |y| < 2.4, lepton: $|\eta| < \sim 2.4$
 - ◆ LHCb: pT(c-jet) 20GeV-100GeV, |y| (Z): 2-4.5
- Backgrounds:
 - ATLAS: Z+jets: fit of FT discriminant, tt in emu
 - CMS: Zjets, tt: Fit of secondary-vertex mass
 - LHCb: Z+jets: Fit of corrected mass and N(track)
- Uncertainties:
 - ◆ ATLAS: 13.3% (mostly flavour tagging, JES,..)
 - CMS: 6.2% (flavour tagging, JES..)
 - ◆ LHCb: 11% (mostly flavour tagging and DVfit)

NEW: ATLAS: 140/fb: arXiv:2403.15093

CMS: 36/fb JHEP 04 (2021) 109

LHCb: 6/fb Phys. Rev. Lett. 128 (2022) 082001

- Charm tagging:
 - ATLAS: Loose Z+b tagger (30% c eff.)
 - CMS: tight charm tagger (30% c eff.)
 - LHCb: DV tagger (24% c eff.)

ATLAS Z+c measurements: inclusive cross section

ATLAS: σ (Z+c) = 20 ± 0.07 ± 2.77pb.

Measurements compatible with all 5F predictions, MGaMC Zcc 3F NLO does not describe the Z+c data

CMS: σ (Z+c)/BF(Z \rightarrow ll) = σ (Z+c)/0.0336 = 405.4 ± 5.6 (stat) ± 24.3 (exp) ± 3.7 (theo) pb \rightarrow Discrepancy with MG5_aMC (NLO) predicted value of 524.9 ± 11.7 (theo) pb

- ATLAS
 - MGaMC FxFx 0–3p NLO
 - ◆ SHERPA 0–2p NLO, 3–5p LO
 - ◆ MGaMC 4F NLO
 - MGaMC Zcc 3F NLO
 - ◆ MGaMC FxFx with IC PDFs
 - Fixed-order NNLO flavour-dressing
- CMS
 - MGaMC multi-leg NLO
 - MGaMC multileg LO
 - ♦ Sherpa

LHCb: Z+c/Z+j in the forward region

Measured $\mathcal{R}_{j}^{c} \equiv \sigma(Zc)/\sigma(Zj)$ in 3 bins of y(Z)

 \rightarrow sensitive to high-x charm PDF, where intrinsic (valence-like) charm would peak

no-IC fails to describe the measured y(Z) distribution

→ interpreted as evidence for Intrinsic Charm by NNPDF collaboration (Nature 608, 483-487 (2022)

ATLAS: Comparison with 5F multi-leg MGaMC+FxFx with PDF corresponding to different IC predictions:

- NPDF31 (default)
- NNPDF4.0 (NNLO)PCH(no IC): no intrinsic charm
- NNPDF4.0 (NNLO): baseline, some IC
- NNPDF4.0 (NNLO) EMC+LHCbZc: incl. LHCb Zc/Zj
- CT14 (NNLO) (noIC): no intrinsic charm
- CT14 (NNLO) IC-BHPS1, older PDF, fixed 0.6% IC
- CT14 (NNLO) IC-BHPS2, older PDF, fixed 2.1% IC
- CT18 (NNLO) (no IC)
- CT18FC-CT18 BHPS3: BHPS3 model
- CT18FC-CT18 MCM-E: Meson-Baryon model, based on effective mass

ATLAS:

- Only BHPS2 clearly improves the description of the data.
- More realistic PDF fits: only marginal improvement for PDF with IC (last two bins)

ATLAS: Comparison with 5F multi-leg MGaMC+FxFx with PDF corresponding to different IC predictions:

- NPDF31 (default)
- NNPDF4.0 (NNLO)PCH(no IC): only perturbative charm
- NNPDF4.0 (NNLO): baseline, some IC
- NNPDF4.0 (NNLO) EMC+LHCbZc: incl. LHCb Zc/Zj
- CT14 (NNLO) (noIC)
- CT14 (NNLO) IC-BHPS1, older PDF, fixed 0.6% IC
- CT14 (NNLO) IC-BHPS2, older PDF, fixed 2.1% IC
- CT18 (NNLO) (no IC)
- CT18FC-CT18 BHPS3: BHPS3 model
- CT18FC-CT18 MCM-E: Meson-Baryon model, based on effective mass

ATLAS: BHPS2 improves the description of the data in some places. The more realistic PDF fits have only marginal impact.

ATLAS W+charm production: $D^{\pm} |\eta|$ dependence

Inclusive and differential (W⁺, W⁻) cross-sections as a function of $p_T(D)$ and $\eta(\ell) \rightarrow s$ - and anti-s PDF W charge ratios \rightarrow sensitive to differences between the s- and anti-s PDFs

Channel	$D^+ \eta(\ell) $				
<i>p</i> -value for PDF [%]	Exp. Only	\oplus QCD Scale	\oplus Had. and Matching	\oplus PDF	
ABMP16_5_nnlo	7.1	11.8	12.9	19.8	
ATLASpdf21_T3	9.0	9.7	11.5	84.7	
CT18ANNLO	0.7	1.0	1.1	76.0	
CT18NNLO	1.4	6.1	6.3	87.6	
MSHT20nnlo_as118	2.7	2.9	3.3	45.6	
PDF4LHC21_40	3.9	5.3	5.6	75.8	
NNPDF31_nnlo_as_0118_hessian	1.5	2.6	2.8	50.7	
NNPDF31_nnlo_as_0118_strange	9.1	14.7	15.2	59.9	
NNPDF40_nnlo_as_01180_hessian	9.9	10.2	10.2	43.7	

ATLAS: Data with broader η distribution than nominal aMC@NLO predictions but consistent within PDF uncertainties

ATLAS W+charm production: $D^*|\eta|$ dependence

Inclusive and differential (W⁺, W⁻) cross-sections as a function of $p_T(D)$ and $\eta(\ell) \rightarrow s$ - and anti-s PDF W charge ratios \rightarrow sensitive to differences between the *s*- and anti-*s* PDFs

Channel	$ \qquad D^{*+} \eta(\ell) $					
<i>p</i> -value for PDF [%]	Exp. Only	\oplus QCD Scale	\oplus Had. and Matching	$ \oplus PDF$		
ABMP16_5_nnlo	22.8	23.7	25.0	28.8		
ATLASpdf21_T3	1.9	2.9	3.4	33.7		
CT18ANNLO	6.5	6.9	7.8	47.3		
CT18NNLO	9.4	19.2	19.7	52.8		
MSHT20nnlo_as118	7.0	9.4	10.4	31.3		
PDF4LHC21_40	14.2	14.2	15.2	51.4		
NNPDF31_nnlo_as_0118_hessian	5.0	5.1	5.5	34.9		
NNPDF31_nnlo_as_0118_strange	11.4	12.4	13.2	46.0		
NNPDF40_nnlo_as_01180_hessian	4.5	6.1	6.4	36.0		

ATLAS: Data with broader η distribution than nominal aMC@NLO predictions but consistent within PDF uncertainties

ATLAS W+charm production: pT dependence

Inclusive and differential (W⁺, W⁻) cross-sections as a function of $p_T(D)$ and $\eta(\ell) \rightarrow s$ - and anti-s PDF W charge ratios \rightarrow sensitive to differences between the s- and anti-s PDFs

CMS W+charm production: inclusive cross sec., pT dependence

ATLAS W+charm production: signal extraction

ATLAS W+charm production: cross sections

ATLAS Z+Heavy Flavour: Flavour fit

ATLAS Z+Heavy Flavour: uncertainties

ATLAS Z+Heavy Flavour: unfolding

